Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Phys Chem B ; 122(22): 6055-6063, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29624401

ABSTRACT

Cyclodextrins (CDs) are a family of oligosaccharides with a toroid shape, which exhibit a remarkable ability to include guest molecules in their internal cavity, providing a hydrophobic environment for poorly soluble molecules. Recently, new types of inclusions of α CDs with alkyl grafted polysaccharide chains (pullulan, chitosan, dextran, amylopectin, chondroitin sulfate...) have been prepared which are autoassembled into micro- and nanoplatelets. We report in this paper an extensive investigation of platelets with different compositions, including their reversible hydration (thermogravimetric analysis), crystalline structure (powder X-ray diffraction), dimensions and shapes (scanning electron microscopy-field emission gun), thermal properties, solubility, and melting (micro-differential scanning calorimetry). The crystalline platelets exhibit layered structures intercalating the polysaccharide backbones and CD complexes hosting the grafted alkyl chains. The monoclinic symmetry of columnar-type crystals suggests a head-to-tail arrangement of the CDs. The platelets have a preferentially hexagonal shape with sharp edges, variable sizes, and thicknesses and sometimes show incomplete layers (terraces). The crystal parameters change upon dehydration. Melting temperatures of platelets in aqueous solutions exceed 100 °C. Finally, we discuss the potential relation between the platelet structure and applications for mucoadhesive devices.


Subject(s)
Blood Platelets/chemistry , Polysaccharides/chemistry , alpha-Cyclodextrins/chemistry , Crystallography, X-Ray , Humans , Microscopy, Electron, Scanning , Solubility , Thermogravimetry
2.
J Colloid Interface Sci ; 482: 48-57, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27491001

ABSTRACT

This paper explores structural, interfacial and thermal properties of two types of Pickering emulsions containing α-cyclodextrin inclusion complexes: on one hand, emulsions were obtained between aqueous solutions of α-cyclodextrin and different oils (fatty acids, olive oil, silicone oil) and on the other hand, emulsions were obtained between these oils, water and micro or nano-platelet suspensions with inclusion complexes of hydrophobically-modified polysaccharides. The emulsions exhibit versatile properties according to the molecular architecture of the oils. Experiments were performed by microcalorimetry, X-ray diffraction and confocal microscopy. The aptitude of oil molecules to be threaded in α-cyclodextrin cavity is a determining parameter in emulsification and thermal stability. The heat flow traces and images showed dissolution, cooperative melting and de-threading of inclusion complexes which take place progressively, ending at high temperatures, close or above 100°C. Another important feature observed in the emulsions with micro-platelets is the partial substitution of the guest molecules occurring at room temperature at the oil/water interfaces without dissolution, possibly by a diffusion mechanism of the oil. Accordingly, the dissolution and the cooperative melting temperatures of the inclusion crystals changed, showing marked differences upon the type of guest molecules. The enthalpies of dissolution of crystals were measured and compared with soluble inclusions.


Subject(s)
Fatty Acids/chemistry , Olive Oil/chemistry , Silicone Oils/chemistry , Water/chemistry , alpha-Cyclodextrins/chemistry , Crystallization , Diffusion , Emulsions , Hydrophobic and Hydrophilic Interactions , Kinetics , Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL