Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
1.
Anal Chem ; 96(9): 3837-3843, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38384162

ABSTRACT

Herein, an antibody-protein-aptamer electrochemical biosensor was designed by highly efficient proximity-induced DNA hybridization on a tetrahedral DNA nanostructure (TDN) for ultrasensitive detection of human insulin-like growth factor-1 (IGF-1). Impressively, the IGF-1 antibody immobilized on the top vertex of the TDN could effectively capture the target protein with less steric effect, and the ferrocene-labeled signal probe (SP) bound on the bottom vertex of the TDN was close to the electrode surface for generating a strong initial signal. In the presence of target protein IGF-1 and an aptamer strand, an antibody-protein-aptamer sandwich could be formed on the top vertex of TDN, which would trigger proximity-induced DNA hybridization to release the SP on the bottom vertex of TDN; therefore, the signal response would decrease dramatically, enhancing the sensitivity of the biosensor. As a result, the linear range of the proposed biosensor for target IGF-1 was 1 fM to 1 nM with the limit of detection down to 0.47 fM, which was much lower than that of the traditional TDN designs on electrochemical biosensors. Surprisingly, the use of this approach offered an innovative approach for the sensitive detection of biomarkers and illness diagnosis.


Subject(s)
Biosensing Techniques , Nanostructures , Humans , Insulin-Like Peptides , Insulin-Like Growth Factor I , DNA/chemistry , Antibodies , Oligonucleotides , Nanostructures/chemistry , Electrochemical Techniques , Limit of Detection
2.
Anal Chem ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946419

ABSTRACT

Apurinic/apyrimidinic endonuclease 1 (APE1), as a vital base excision repair enzyme, is essential for maintaining genomic integrity and stability, and its abnormal expression is closely associated with malignant tumors. Herein, we constructed an electrochemiluminescence (ECL) biosensor for detecting APE1 activity by combining nanoconfined ECL silver nanoclusters (Ag NCs) with X-shaped DNA recognizer-triggered cascade amplification. Specifically, the Ag NCs were prepared and confined in the glutaraldehyde-cross-linked chitosan hydrogel network using the one-pot method, resulting in a strong ECL response and exceptional stability in comparison with discrete Ag NCs. Furthermore, the self-assembled X-shaped DNA recognizers were designed for APE1 detection, which not only improved reaction kinetics due to the ordered arrangement of recognition sites but also achieved high sensitivity by utilizing the recognizer-triggered cascade amplification of strand displacement amplification (SDA) and DNAzyme catalysis. As expected, this biosensor achieved sensitive ECL detection of APE1 in the range of 1.0 × 10-3 U·µL-1 to 1.0 × 10-10 U·µL-1 with the detection limit of 2.21 × 10-11 U·µL-1, rendering it a desirable approach for biomarker detection.

3.
Anal Chem ; 96(24): 9961-9968, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38838250

ABSTRACT

In this study, a novel europium dual-ligand metal-organic gel (Eu-D-MOGs) with high-efficient anodic annihilation electrochemiluminescence (ECL) was synthesized as an ECL emitter to construct a biosensor for ultrasensitive detection of microRNA-221 (miR-221). Impressively, compared to the ECL signal of europium single-ligand metal-organic gels (Eu-S-MOGs), the ECL signal of Eu-D-MOGs was significantly improved since the two organic ligands could jointly replace the H2O and coordinate with Eu3+, which could remarkably reduce the nonradiative vibrational energy transfer caused by the coordination between H2O and Eu3+ with a high coordination demand. In addition, Eu-D-MOGs could be electrochemically oxidized to Eu-D-MOGs•+ at 1.45 V and reduced to Eu-D-MOGs•- at 0.65 V to achieve effective annihilation of ECL, which overcame the side reaction brought by the remaining emitters at negative potential. This benefited from the annihilation ECL performance of the central ion Eu3+ caused by its redox in the electrochemical process. Furthermore, the annihilation ECL signal of Eu3+ could be improved by sensitizing Eu3+ via the antenna effect. In addition, combined with the improved rolling circle amplification-assisted strand displacement amplification strategy (RCA-SDA), a sensitive biosensor was constructed for the sensitive detection of miR-221 with a low detection limit of 5.12 aM and could be successfully applied for the detection of miR-221 in the lysate of cancer cells. This strategy offered a unique approach to synthesizing metal-organic gels as ECL emitters without a coreactant for the construction of ECL biosensing platforms in biomarker detection and disease diagnosis.


Subject(s)
Electrochemical Techniques , Electrodes , Europium , Gels , Luminescent Measurements , MicroRNAs , Europium/chemistry , MicroRNAs/analysis , Electrochemical Techniques/methods , Ligands , Gels/chemistry , Biosensing Techniques/methods , Limit of Detection , Humans
4.
Anal Chem ; 96(11): 4589-4596, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38442212

ABSTRACT

Herein, novel europium metal-organic gels (Eu-MOGs) with excellent cathode electrochemiluminescence (ECL) emission are first used to construct biosensors for the ultrasensitive detection of miRNA-222. Impressively, N and O elements of organic ligand 2,2':6,2″-terpyridine 4,4',4″-tricarboxylic acid (H3-tctpy) can perfectly coordinate with Eu3+ to form Eu-MOGs, which not only reduce nonradiative transition caused by the intramolecular free rotation of phenyl rings in other MOGs to enhance the ECL signal with extraordinary ECL efficiency as high as 37.2% (vs the [Ru(bpy)3]2+/S2O82- ECL system) but also reinforce ligand-to-metal charge transfer (LMCT) by the strong affinity between Eu3+ and N and O elements to greatly improve the stability of ECL signals. Besides, an improved nucleic acid cascade amplification reaction is developed to greatly raise the conversion efficiency from target miRNA-222 to a DNAzyme-mediated dual-drive DNA walker as output DNA, which can simultaneously shear the specific recognition sites from two directions. In that way, the proposed biosensor can further enhance the detection sensitivity of miRNA-222 with a linear range of 10 aM-1 nM and a detection limit (LOD) of 8.5 aM, which can also achieve an accurate response in cancer cell lysates of MHCC-97L and HeLa. Additionally, the biosensor can be self-regenerated by the folding/unfolding of related triplets with pH changes to simplify experimental operations and reduce the cost. Hence, this work proposed novel MOGs with stable and intense ECL signals for the construction of a renewable ECL biosensor, supplying a reliable detection method in biomarker analysis and disease diagnosis.


Subject(s)
Biosensing Techniques , DNA, Catalytic , MicroRNAs , Humans , Europium , Ligands , DNA/chemistry , Luminescent Measurements/methods , MicroRNAs/analysis , Biosensing Techniques/methods , Gels , Electrochemical Techniques/methods , Limit of Detection
5.
Anal Chem ; 96(19): 7516-7523, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38691765

ABSTRACT

Herein, single-atom iron doped carbon dots (SA Fe-CDs) were successfully prepared as novel electrochemiluminescence (ECL) emitters with high ECL efficiency, and a biosensor was constructed to ultrasensitively detect microRNA-222 (miRNA-222). Importantly, compared with the conventional without single-atom doped CDs with low ECL efficiency, SA Fe-CDs exhibited strong ECL efficiency, in which single-atom iron as an advanced coreactant accelerator could significantly enhance the generation of reactive oxygen species (ROS) from the coreactant S2O82- for improving the ECL efficiency. Moreover, a neoteric amplification strategy combining the improved strand displacement amplification with Nt.BbvCI enzyme-induced target amplification (ISDA-EITA) could produce 4 output DNAs in every cycle, which greatly improved the amplification efficiency. Thus, a useful ECL biosensor was built with a detection limit of 16.60 aM in the range of 100 aM to 1 nM for detecting traces of miRNA-222. In addition, miRNA-222 in cancer cell lysate (MHCC-97L) was successfully detected by using the ECL biosensor. Therefore, this strategy provides highly efficient single-atom doped ECL emitters for the construction of sensitive ECL biosensing platforms in the biological field and clinical diagnosis.


Subject(s)
Biosensing Techniques , Carbon , Electrochemical Techniques , Iron , Luminescent Measurements , MicroRNAs , Quantum Dots , MicroRNAs/analysis , Carbon/chemistry , Iron/chemistry , Electrochemical Techniques/methods , Quantum Dots/chemistry , Humans , Biosensing Techniques/methods , Limit of Detection
6.
Anal Chem ; 95(9): 4454-4460, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36880263

ABSTRACT

In this work, Cu nanoclusters (Cu NCs) with strong aggregation-induced electrochemiluminescence (AIECL) as emitters were used to construct an ECL biosensor for ultrasensitive detection of microRNA-141 (miR-141). Impressively, the ECL signals enhanced with the increased content of Cu(I) in the aggregative Cu NCs. When the ratio of Cu(I)/Cu(0) in aggregative Cu NCs was 3.2, Cu NCs aggregates showed the highest ECL intensity, in which Cu(I) could enhance the cuprophilic Cu(I)···Cu(I) interaction to form rod-shaped aggregates for restricting nonradiative transitions to obviously improve the ECL response. As a result, the ECL intensity of the aggregative Cu NCs was 3.5 times higher than that of the monodispersed Cu NCs. With the aid of the cascade strand displacement amplification (SDA) strategy, an outstanding ECL biosensor was developed to achieve the ultrasensitive detection of miR-141, whose linear range varied from 10 aM to 1 nM with a detection limit of 1.2 aM. This approach opened an avenue to prepare non-noble metal nanomaterials as robust ECL emitters and provided a new idea for detection of biomolecules for diagnosis of disease.


Subject(s)
MicroRNAs , Nanostructures , Copper , Photometry
7.
Anal Chem ; 95(35): 13156-13162, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37606955

ABSTRACT

Herein, by introducing gold nanostars (AuNSs) as fuel core, a near-infrared-driven nanorocket (NIDNR) with pretty fast walking was exploited for ultrasensitive miRNA detection. Compared with traditional nanomaterials-comprised nanomachines (NMs), the NIDNR possesses much better kinetic and thermodynamic performance owing to the extra photothermal driving force from localized surface plasmon (LSP). Impressively, the whole reaction time of NIDNR down to 15 min was realized, which is almost more than 8 times beyond those of conventional DNA-based NMs. This way, the inherent obstacle of traditional NMs, including long reaction time and low efficiency, could be easily addressed. As a proof of concept, the NIDNR was successfully applied to develop an electrochemical biosensing platform for rapid and sensitive detection of miRNA with an LOD down to 2.95 aM and achieved the real-time assay of real biological samples from human hepatocellular carcinoma cells (MHCC97L) and HeLa, thus providing an innovative insight to design more versatile DNA nanomachines for ultimate application in biosensing platform construction and clinical sample detection.


Subject(s)
Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/instrumentation , Spectroscopy, Near-Infrared/methods , MicroRNAs/chemistry , Time Factors , Gold , Metal Nanoparticles/chemistry , Biosensing Techniques , Reproductive Techniques , Humans , Cell Line, Tumor
8.
Anal Chem ; 95(34): 12754-12760, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37590171

ABSTRACT

In this study, a pH-stimulated self-locked DNA nanostructure (SLDN) was developed to efficiently distinguish cancer cells from other cells for the simultaneous detection and imaging of endogenous dual-microRNAs (miRNAs). Impressively, the SLDN was specifically unlocked in the acidic environment of cancer cells to form unlocked-SLDN to disengage the i-motif sequence with a labeled fluorophore for the recovery of a fluorescence signal, resulting in the differentiation of cancer cells from normal cells. Meanwhile, unlocked-SLDN could combine and recognize the targets miRNA-21 and miRNA-155 simultaneously to trigger the hybridization chain reaction (HCR) amplification for sensitive dual-miRNA detection, with detection limits of 1.46 pM for miRNA-21 and 0.72 pM for miRNA-155. Significantly, compared with the current miRNA imaging strategy based on the traditional DNA nanostructure, the strategy proposed here remarkably eliminates the interference of normal cells to achieve high-resolution colocation imaging of miRNAs in tumor cells with an ultralow background signal. This work provided a specific differentiation method for tumor cells to materialize sensitive biomarker detection and distinguishable high-definition live-cell imaging for precise cancer diagnosis and multifactor research of tumor progression.


Subject(s)
MicroRNAs , Nanostructures , Neoplasms , Repetitive Sequences, Nucleic Acid , Cell Differentiation , Hydrogen-Ion Concentration , Neoplasms/diagnostic imaging
9.
Anal Chem ; 95(2): 1490-1497, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36596235

ABSTRACT

In this work, a high-efficiency controllable three-dimensional (3D) DNA nanomachine (CDNM) was reasonably developed by regulating the diameter of the core and the length of the DNAzyme cantilever, which acquired greater amplification efficiency and speedier walking rate than traditional 3D DNA nanomachines with gold nanoparticles as the cores and DNAzymes as the walking arms. Significantly, once the target miRNA-21 existed, a large number of silent DNAzymes on the CDNM could be activated by enzyme-free-target-recycling amplification (EFTRA) to achieve fast cleavage and walking on the biosensor surface under the interaction of Mg2+. Impressively, when the diameter of the core was 40 nm and the length of the DNAzyme cantilever was 5 nm (15 bp), the CDNM could complete the reaction process in 60 min that was at least twice shorter than those of conventional DNA nanomachines. Moreover, the designed electrochemical biosensor successfully detected target miRNA-21 at an ultrasensitive level with a wide response range (100 aM to 1 nM) and a low detection limit (33.1 aM). Therefore, the developed CDNM provides a new idea for exploring functional DNA nanomachines in the field of biosensing for applications.


Subject(s)
Biosensing Techniques , DNA, Catalytic , Metal Nanoparticles , MicroRNAs , MicroRNAs/genetics , Gold , Limit of Detection , DNA , Biosensing Techniques/methods , Electrochemical Techniques/methods
10.
Anal Chem ; 95(17): 6785-6790, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37078967

ABSTRACT

Preparing high-efficiency ECL gold nanoclusters (Au NCs) still faces a serious challenge due to the poor stability of co-reactant radicals in aqueous media. Herein, we report a ligand-based shielding effect induced record near-infrared (λmax = 786 nm) ECL efficiency of ß-cyclodextrin-protected Au NCs (ß-CD-Au NCs) with triethylamine (TEA) as co-reactant. The ligand of ß-CD-Au NCs with a matched hydrophobic cavity could encapsulate TEA driven by host-guest chemistry, which not only allows the generation of TEA• in the cavity to diminish environmental exposure, thus reducing the quenching by dissolved oxygen, water, etc., but also shortens the charge transfer pathway without extensive chemical modification. Density functional theory, 1H NMR spectra, electron paramagnetic resonance, and differential pulse voltammetry studies revealed that the ß-CD ligand-based shielding effect significantly increased the reactivity efficiency of TEA. More importantly, in stark contrast to those of traditional ligand-protected Au NCs, the ECL efficiency of ß-CD-Au NCs enhanced 321-fold versus BSA-Au NCs, 153-fold versus ATT-Au NCs, and 19-fold versus GSH-Au NCs with 1 mM TEA. Therefore, this work provides an in-depth understanding of the crucial role of ligands in enhancing the active co-reactant radical stability for high-efficiency ECL metal NCs to immensely stimulate their promising applications. Using the ß-CD-Au NCs as emitters, a "signal off" ECL sensing platform was constructed to detect noradrenaline as a model target with a lower detection limit of 0.91 nM.

11.
Anal Chem ; 95(2): 1686-1693, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36541619

ABSTRACT

Due to effective tackling of the problems of aggregation-caused quenching of traditional ECL emitters, aggregation-induced electrochemiluminescence (AIECL) has emerged as a research hotspot in aqueous detection and sensing. However, the existing AIECL emitters still encounter the bottlenecks of low ECL efficiency, poor biocompatibility, and high cost. Herein, aluminum(III)-based organic nanofibrous gels (AOGs) are used as a novel AIECL emitter to construct a rapid and ultrasensitive sensing platform for the detection of Flu A virus biomarker DNA (fDNA) with the assistance of a high-speed and hyper-efficient signal magnifier, a rigid triplex DNA walker (T-DNA walker). The proposed AOGs with three-dimensional (3D) nanofiber morphology are assembled in one step within about 15 s by the ligand 2,2':6',2″-terpyridine-4'-carboxylic acid (TPY-COOH) and cheap metal ion Al3+, which demonstrates an efficient ECL response and outstanding biocompatibility. Impressively, on the basis of loop-mediated isothermal amplification-generated hydrogen ions (LAMP-H+), the target-induced pH-responsive rigid T-DNA walker overcomes the limitations of conventional single or duplex DNA walkers in walking trajectory and efficiency due to the entanglement and lodging of leg DNA, exhibiting high stability, controllability, and walking efficiency. Therefore, AOGs with excellent AIECL performance were combined with a CG-C+ T-DNA nanomachine with high walking efficiency and stability, and the proposed "on-off" ECL biosensor displayed a low detection limit down to 23 ag·µL-1 for target fDNA. Also, the strategy provided a useful platform for rapid and sensitive monitoring of biomolecules, considerably broadening its potential applications in luminescent molecular devices, clinical diagnosis, and sensing analysis.


Subject(s)
Biosensing Techniques , MicroRNAs , Nanofibers , Aluminum , Luminescent Measurements/methods , DNA, Viral , Biosensing Techniques/methods , Electrochemical Techniques/methods , Limit of Detection , MicroRNAs/analysis
12.
Anal Chem ; 95(34): 12768-12775, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37587155

ABSTRACT

Herein, a surface-enhanced Raman scattering (SERS) biosensor was constructed by gold nanobipyramid (Au NBP) hotspot aggregation-induced SERS (HAI-SERS) for the ultrasensitive detection of microRNA-221 (miRNA-221). Impressively, compared with single Au NBP, the multiple Au NBPs assembled by tetrahedral DNA nanostructures (TDNs) could increase hotspot aggregation to significantly enhance the SERS signal of Raman molecule methylene blue (MB). Meanwhile, in the aid of Exo-III assisted target cycle amplification and TDNs-induced catalytic hairpin assembly (CHA) amplification, the biosensor could achieve the sensitive detection of miRNA-221 with a linear range of 1 fM-10 nM, and the limit of detection (LOD) was 0.59 fM, which could be used for practical application in MHCC-97L and MCF-7 cell lysates. This work provided a method for hotspot aggregation to enhance SERS for the detection of biomarkers and disease diagnosis.


Subject(s)
MicroRNAs , Spectrum Analysis, Raman , Catalysis , Gold , Limit of Detection
13.
Anal Chem ; 95(24): 9314-9322, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37277958

ABSTRACT

Herein, the novel alloyed silver gold sulfur quantum dots (AgAuS QDs) with highly efficient near-infrared (NIR) electrochemiluminescence (ECL) emission at 707 nm were successfully prepared to construct a biosensing platform for ultrasensitive detection of microRNA-222 (miRNA-222). Interestingly, AgAuS QDs revealed excellent ECL efficiency (34.91%) compared to that of Ag2S QDs (10.30%), versus the standard [Ru(bpy)3]2+/S2O82- system, which benefited from the advantages of abundant surface defects and narrow bandgaps by Au incorporation. Additionally, an improved localized catalytic hairpin self-assembly (L-CHA) system was developed to display an increased reaction speed by improving the local concentration of DNA strands, which addressed the obstacles of time-consuming traditional CHA systems. As a proof of concept, based on AgAuS QDs as an ECL emitter and improved localized CHA systems as a signal amplification strategy, a "signal on-off" ECL biosensor was developed to exhibit a superior reaction rate and excellent sensitivity with a detection limit of 10.5 aM for the target miRNA-222, which was further employed for the analysis of miRNA-222 from cancer cell (MHCC-97L) lysate. This work advances the exploration of highly efficient NIR ECL emitters to construct an ultrasensitive biosensor for the detection of biomolecules in disease diagnosis and NIR biological imaging.


Subject(s)
Biosensing Techniques , MicroRNAs , Quantum Dots , MicroRNAs/analysis , Luminescent Measurements/methods , Electrochemical Techniques/methods , Biosensing Techniques/methods , Gold , Sulfur , Limit of Detection
14.
Anal Chem ; 95(13): 5568-5574, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36946240

ABSTRACT

Herein, Zn2+-induced gold cluster aggregation (Zn2+-GCA) as a high-efficiency electrochemiluminescence (ECL) emitter is first employed to construct an ECL biosensor to ultrasensitively detect microRNA-21 (miRNA-21). Impressively, Zn2+ not only can induce the aggregation of monodispersed gold clusters (Au NCs) to limit the ligand vibration of Au NCs for improving ECL emission but also can be utilized as a coreaction accelerator to catalyze the dissociation of coreactant S2O82- into sulfate radicals (SO4•-) to improve the interaction efficiency between Zn2+-GCA and S2O82-, resulting in further intense ECL emission. Compared to Au NCs stabilized by bovine serum albumin with ECL efficiency of 0.40%, Zn2+-GCA possessed high ECL efficiency of 10.54%, regarding the [Ru(bpy)3]2+/S2O82- system as a standard. Furthermore, output DNA modified with poly adenine (polyA) obtained from enzyme-free target recycling amplification can be efficiently immobilized on the surface of gold nanoparticles (Au NPs) to reduce the defect of special design, cumbersome operation, and low stability. Thus, an ultrasensitive ECL biosensor based on the Zn2+-GCA/S2O82- ECL system and enzyme-free target recycling amplification achieved ultrasensitive detection of miRNA-21 with the detection limit of 44.7 aM. This strategy presents a new idea to design highly efficient ECL emitters, which is expected to be used in the field of bioanalysis for clinical diagnosis.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , MicroRNAs , Gold , Limit of Detection , Luminescent Measurements/methods , Electrochemical Techniques/methods , Biosensing Techniques/methods , MicroRNAs/analysis , Zinc
15.
Anal Chem ; 95(17): 7021-7029, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37081730

ABSTRACT

In this study, nitrogen-, sulfur-, and fluorine-codoped carbon dots (NSF-CDs) with high electrochemiluminescence (ECL) efficiency were developed as novel emitters to fabricate an ECL biosensor for sensitive detection of matrix metalloproteinase 2 (MMP-2). Impressively, compared to previously reported CDs, NSF-CDs with narrow band gap not only decreased the excitation voltage to reduce the side reaction and the damage on biomolecules but also had hydrogen bonds to vastly enhance the ECL efficiency. Furthermore, an improved exonuclease III (Exo III)-assisted nucleic acid amplification method was established to convert trace MMP-2 into a mass of output DNA, which greatly improved the target conversion efficiency and ECL signal. Hence, the ECL biosensor has realized the sensitive detection of MMP-2 proteins from 10 fg/mL to 10 ng/mL with a limit of detection of 6.83 fg/mL and has been successfully applied in the detection of MMP-2 from Hela and MCF-7 cancer cells. This strategy offered neoteric CDs as ECL emitters for sensitive testing of biomarkers in medical research.


Subject(s)
Biosensing Techniques , Quantum Dots , Humans , Matrix Metalloproteinase 2 , Fluorine , Luminescent Measurements/methods , Nitrogen/chemistry , Carbon/chemistry , Biosensing Techniques/methods , Sulfur/chemistry , Quantum Dots/chemistry , Electrochemical Techniques/methods , Limit of Detection
16.
Anal Chem ; 95(8): 4131-4137, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36799666

ABSTRACT

A novel ultrasensitive electrochemiluminescence (ECL) biosensor was constructed using two-dimensional (2D) Co3O4 nanosheets as a novel coreaction accelerator of the luminol/H2O2 ECL system for the detection of microRNA-21 (miRNA-21). Impressively, coreaction accelerator 2D Co3O4 nanosheets with effective mutual conversion of the Co2+/Co3+ redox pair and abundant active sites could promote the decomposition of coreactant H2O2 to generate more superoxide anion radicals (O2•-), which reacted with luminol for significantly enhancing ECL signals. Furthermore, the trace target miRNA-21 was transformed into a large number of G-wires through the strand displacement amplification (SDA) process to self-assemble the highly ordered rolling DNA nanomachine (HORDNM), which could tremendously improve the detection sensitivity of biosensors. Hence, on the basis of the novel luminol/H2O2/2D Co3O4 nanosheet ternary ECL system, the biosensor implemented ultrasensitive detection of miRNA-21 with a detection limit as low as 4.1 aM, which provided a novel strategy to design an effective ECL emitter for ultrasensitive detection of biomarkers for early disease diagnosis.


Subject(s)
Biosensing Techniques , MicroRNAs , MicroRNAs/chemistry , Luminol/chemistry , Hydrogen Peroxide , Luminescent Measurements/methods , Electrochemical Techniques/methods , DNA/chemistry , Biosensing Techniques/methods , Limit of Detection
17.
Anal Chem ; 95(45): 16625-16630, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37908115

ABSTRACT

Herein, a novel photocathodic nanocomposite poly{4,8-bis[5-(2-ethylhexyl)-thiophen-2-yl] benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno[3,4-b]thiophene-4,6-diyl}/phthalocyanine zinc (PTB7-Th/ZnPc) with high photoelectric conversion efficiency under long-wavelength illumination was prepared to construct an ultrasensitive biosensor for the detection of microRNA-21 (miRNA-21), accompanied by a prominent anti-interference capability toward reductive substances. Impressively, the new heterojunction PTB7-Th/ZnPc nanocomposite could not only generate a strong cathodic photocurrent to improve the detection sensitivity under long-wavelength illumination (660 nm) but also effectively avoid the high damage of biological activity caused by short-wavelength light stimulation. Accordingly, by coupling with rolling circle amplification (RCA)-triggered DNA amplification to form functional biquencher nanospheres, a PEC biosensor was fabricated to realize the ultrasensitive analysis of miRNA-21 in the concentration range of 0.1 fM to 10 nM with a detection limit as low as 32 aM. This strategy provided a novel long-wavelength illumination-induced photocurrent enhancement photoactive material for a sensitive and low-damage anti-interference bioassay and early clinical disease diagnosis.


Subject(s)
Biosensing Techniques , MicroRNAs , Nanocomposites , Lighting , Electrochemical Techniques , MicroRNAs/analysis
18.
Anal Chem ; 95(8): 4077-4085, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36787389

ABSTRACT

Herein, by directly limiting the reaction space, an ingenious three-dimensional (3D) DNA walker (IDW) with high walking efficiency is developed for rapid and sensitive detection of miRNA. Compared with the traditional DNA walker, the IDW immobilized by the DNA tetrahedral nanostructure (DTN) brings stronger kinetic and thermodynamic favorability resulting from its improved local concentration and space confinement effect, accompanied by a quite faster reaction speed and much better walking efficiency. Once traces of target miRNA-21 react with the prelocked IDW, the IDW could be largely activated and walk on the interface of the electrode to trigger the cleavage of H2 with the assistance of Mg2+, resulting in the release of amounts of methylene blue (MB) labeled on H2 from the electrode surface and the obvious decrease of the electrode signal. Impressively, the IDW reveals a conversion efficiency as high as 9.33 × 108 in 30 min with a much fast reaction speed, which is at least five times beyond that of typical DNA walkers. Therefore, the IDW could address the inherent challenges of the traditional DNA walker easily: slow walking speed and low efficiency. Notably, the IDW as a DNA nanomachine was utilized to construct a sensitive sensing platform for rapid miRNA-21 detection with a limit of detection (LOD) of 19.8 aM and realize the highly sensitive assay of biomarker miRNA-21 in the total RNA lysates of cancer cell. The strategy thus helps in the design of a versatile nucleic acid conversion and signal amplification approach for practical applications in the areas of biosensing assay, DNA nanotechnology, and clinical diagnosis.


Subject(s)
Biosensing Techniques , MicroRNAs , Nanostructures , MicroRNAs/genetics , Biosensing Techniques/methods , Electrochemical Techniques/methods , DNA/chemistry , Nanostructures/chemistry , Limit of Detection
19.
Anal Chem ; 94(24): 8732-8739, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35678832

ABSTRACT

Herein, a novel tetrahedral DNA walker with four arms was engineered to travel efficiently on the 3D-tracks via catalyzed hairpin assembly autonomously, realizing the sensitive detection and activity assessment as well as intracellular imaging of apurinic/apyrimidinic endonuclease 1 (APE1). In contrast to traditional DNA walkers, the tetrahedral DNA walker with the rigid 3D framework structure and nonplanar multi-sites walking arms endowed with high collision efficiency, showing a fast walking rate and high nuclease resistance. Impressively, the initial rate of the tetrahedral DNA walker with four arms was 4.54 times faster than that of the free bipedal DNA walker and produced a significant fluorescence recovery in about 40 min, achieving a sensitive detection of APE1 with a low detection limit of 5.54× 10-6 U/µL as well as ultrasensitive intracellular APE1 fluorescence activation imaging. This strategy provides a novel DNA walker for accurate identification of low-abundance cancer biomarker and potential medical diagnosis.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase , DNA , DNA/chemistry , DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Endonucleases , Fluorescence
20.
Anal Chem ; 94(42): 14666-14674, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36245089

ABSTRACT

Herein, Pt@tetraphenyl-1,3-butadiene nanocrystals (Pt@TPB NCs) with high electrochemiluminescence (ECL) efficiencies as ECL emitters were developed to construct an ultrasensitive biosensing platform for the detection of microRNA-21 (miRNA-21). Interestingly, Pt@TPB NCs not only exhibited high carrier densities and electron mobilities to achieve efficient electron-hole pair recombinations for high ECL emission but also served as coreaction accelerators of endogenous coreactant-dissolved O2 with good electrocatalytic activities to produce abundant reactive oxygen species (ROS) for facilitating the interactions between TPB NCs and ROS, which further obtain intense ECL emission. Impressively, Pt@TPB NCs with dissolved O2 as coreactants displayed high ECL efficiencies (ΦECL) of 7.83, taking the ΦECL of Ru(bpy)32+/dissolved O2 ECL system as 1. Herein, Pt@TPB NCs with strong ECL signals were used as ECL emitters to combine target-induced DNA walker amplification with high conversion efficiency for the construction of an ultrasensitive ECL biosening platform which accomplished microRNA-21 detection with a low detection limit of 83.8 aM. Therefore, the developed synergy effects in Pt@TPB NCs are expected to guide the progress of highly efficient ECL emitters for sensing analysis and disease diagnosis.


Subject(s)
Biosensing Techniques , MicroRNAs , Nanoparticles , MicroRNAs/analysis , Electrochemical Techniques , Luminescent Measurements , Reactive Oxygen Species , Limit of Detection , Crystallization , Nanoparticles/chemistry , DNA/chemistry , Acceleration
SELECTION OF CITATIONS
SEARCH DETAIL