Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Sci Food Agric ; 104(10): 5689-5697, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38372563

ABSTRACT

BACKGROUND: To manage industrial waste in accordance with the circular bioeconomy concept it is sometimes necessary to handle grape seeds, an abundant by-product of the wine-making process. This study presents a process based on ultrasound technology for the extraction of grape-seed proteins, due to their nutritional and techno-functional properties. The protein content of extracts obtained under silent and lab-scale conditions was compared with that obtained under semi-industrial ultrasound conditions, and the chemical composition (carbohydrates, total phenols, and lipids) and the elemental profiles of the final, up-scaled downstream extracts were characterized. RESULTS: This work found that the maximum amount of protein in the final product was 378.31 g.kg-1 of the extract. Chemical characterization revealed that each 1 kg of extract had an average content of 326.19 g gallic acid equivalent as total phenols, 162.57 g glucose equivalent as carbohydrates, and 382.76 g of lipophilic compounds. Furthermore, when the extract was checked for hazardous elements, none were found in levels that could be considered a risk for human health. CONCLUSION: The proposed semi-industrial strategy has the potential to contribute greatly to the valorization of grape seeds through the preparation of a protein-rich extract that can be used as an alternative to synthetic wine stabilizers and for the development of novel food and nutraceutical products. © 2024 Society of Chemical Industry.


Subject(s)
Plant Proteins , Seeds , Vitis , Vitis/chemistry , Seeds/chemistry , Plant Proteins/chemistry , Plant Proteins/analysis , Phenols/chemistry , Phenols/analysis , Industrial Waste/analysis , Industrial Waste/economics , Ultrasonics/methods , Wine/analysis , Food Handling/methods , Plant Extracts/chemistry
2.
Molecules ; 28(24)2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38138521

ABSTRACT

Mechanochemical treatment of various organic molecules is an emerging technology of green processes in biofuel, fine chemicals, or food production. Many biopolymers are involved in isolating, derivating, or modifying molecules of natural origin. Mechanochemistry provides a powerful tool to achieve these goals, but the unintentional modification of biopolymers by mechanochemical manipulation is not always obvious or even detectable. Although modeling molecular changes caused by mechanical stresses in cavitation and grinding processes is feasible in small model compounds, simulation of extrusion processes primarily relies on phenomenological approaches that allow only tool- and material-specific conclusions. The development of analytical and computational techniques allows for the inline and real-time control of parameters in various mechanochemical processes. Using artificial intelligence to analyze process parameters and product characteristics can significantly improve production optimization. We aim to review the processes and consequences of possible chemical, physicochemical, and structural changes.


Subject(s)
Artificial Intelligence , Chemical Phenomena , Biopolymers , Stress, Mechanical
3.
Plants (Basel) ; 13(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39065489

ABSTRACT

This study explores the potential of olive leaves, long integral to Mediterranean traditional medicine, as a rich source of valuable compounds. The challenge lies in their considerable water content, hindering these compounds' full valorization. Four drying methods (air-drying, oven-drying, freeze-drying and solar-drying) were investigated for their impact on nutrient and bioactive compound content in the leaves of four olive varieties ("Arbequina", "Koroneiki", "Menara" and "Picholine Marocaine") cultivated in Morocco. In their fresh state, "Picholine Marocaine" exhibited the highest protein levels (6.11%), "Arbequina" had the highest phenolic content (20.18 mg gallic acid equivalents/g fresh weight (FW)), and "Koroneiki" and "Menara" were highest in flavonoids (3.28 mg quercetin equivalents/g FW). Specific drying methods proved optimal for different varieties. Oven-drying at 60 °C and 70 °C effectively preserved protein, while phenolic content varied with drying conditions. Air-drying and freeze-drying demonstrated effectiveness for flavonoids. In addition, an analytical approach using high-performance liquid chromatography and diode array detection (HPLC-DAD) was applied to investigate the effects of the different drying methods on the bioactive fraction of the analyzed samples. The results showed qualitative and quantitative differences depending on both the variety and the drying method used. A total of 11 phenolic compounds were tentatively identified, with oleuropein being the most abundant in all the samples analyzed. The freeze-dried samples showed the highest content of oleuropein in the varieties "Arbequina" and "Picholine Marocaine" compared to the other methods analyzed. In contrast, "Koroneiki" and "Menara" had higher oleuropein content when air dried. Overall, the obtained results highlight the importance of tailored drying techniques for the preservation of nutrients and bioactive compounds in olive leaves.

4.
Food Chem ; 463(Pt 1): 140999, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39316937

ABSTRACT

Hazelnut skins (HS) are usually managed as waste; however, this by-product is a source of bioactive compounds, with potential applications in feed and food sectors. Phenolic compounds can be extracted using green protocols combining enabling technologies and green solvents. This work investigates subcritical water extraction (SWE) of bioactive compounds from HS. A laboratory-scale study was performed on four different batches, with significant batch-to-batch heterogeneity. The evaluation of polyphenolic profiles and antioxidant activities afforded promising results compared to the benchmark of reflux maceration. To evaluate process effectiveness, the extraction protocol was replicated on a semi-industrial plant that processed 8 kg of matrix. Downstream processes have been optimized for scale-up, demonstrating the effectiveness of SWE in retaining product concentration and bioactivity avoiding excipients in spray-drying phase. Hazelnut extracts exhibited antibacterial properties against animal- and food-borne pathogens, supporting their potential use as sustainable feed ingredients for improved hazelnut production and animal farming practices.

SELECTION OF CITATIONS
SEARCH DETAIL