Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Genet Sel Evol ; 56(1): 50, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937662

ABSTRACT

BACKGROUND: Genome sequence variants affecting complex traits (quantitative trait loci, QTL) are enriched in functional regions of the genome, such as those marked by certain histone modifications. These variants are believed to influence gene expression. However, due to the linkage disequilibrium among nearby variants, pinpointing the precise location of QTL is challenging. We aimed to identify allele-specific binding (ASB) QTL (asbQTL) that cause variation in the level of histone modification, as measured by the height of peaks assayed by ChIP-seq (chromatin immunoprecipitation sequencing). We identified DNA sequences that predict the difference between alleles in ChIP-seq peak height in H3K4me3 and H3K27ac histone modifications in the mammary glands of cows. RESULTS: We used a gapped k-mer support vector machine, a novel best linear unbiased prediction model, and a multiple linear regression model that combines the other two approaches to predict variant impacts on peak height. For each method, a subset of 1000 sites with the highest magnitude of predicted ASB was considered as candidate asbQTL. The accuracy of this prediction was measured by the proportion where the predicted direction matched the observed direction. Prediction accuracy ranged between 0.59 and 0.74, suggesting that these 1000 sites are enriched for asbQTL. Using independent data, we investigated functional enrichment in the candidate asbQTL set and three control groups, including non-causal ASB sites, non-ASB variants under a peak, and SNPs (single nucleotide polymorphisms) not under a peak. For H3K4me3, a higher proportion of the candidate asbQTL were confirmed as ASB when compared to the non-causal ASB sites (P < 0.01). However, these candidate asbQTL did not enrich for the other annotations, including expression QTL (eQTL), allele-specific expression QTL (aseQTL) and sites conserved across mammals (P > 0.05). CONCLUSIONS: We identified putatively causal sites for asbQTL using the DNA sequence surrounding these sites. Our results suggest that many sites influencing histone modifications may not directly affect gene expression. However, it is important to acknowledge that distinguishing between putative causal ASB sites and other non-causal ASB sites in high linkage disequilibrium with the causal sites regarding their impact on gene expression may be challenging due to limitations in statistical power.


Subject(s)
Alleles , Chromatin Immunoprecipitation Sequencing , Histones , Quantitative Trait Loci , Animals , Cattle/genetics , Histones/genetics , Histones/metabolism , Chromatin Immunoprecipitation Sequencing/methods , Polymorphism, Single Nucleotide , Histone Code , Linkage Disequilibrium , Molecular Sequence Annotation , Female
2.
Genet Sel Evol ; 56(1): 11, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321371

ABSTRACT

BACKGROUND: The study of ancestral alleles provides insights into the evolutionary history, selection, and genetic structures of a population. In cattle, ancestral alleles are widely used in genetic analyses, including the detection of signatures of selection, determination of breed ancestry, and identification of admixture. Having a comprehensive list of ancestral alleles is expected to improve the accuracy of these genetic analyses. However, the list of ancestral alleles in cattle, especially at the whole genome sequence level, is far from complete. In fact, the current largest list of ancestral alleles (~ 42 million) represents less than 28% of the total number of detected variants in cattle. To address this issue and develop a genomic resource for evolutionary studies, we determined ancestral alleles in cattle by comparing prior derived whole-genome sequence variants to an out-species group using a population-based likelihood ratio test. RESULTS: Our study determined and makes available the largest list of ancestral alleles in cattle to date (70.1 million) and includes 2.3 million on the X chromosome. There was high concordance (97.6%) of the determined ancestral alleles with those from previous studies when only high-probability ancestral alleles were considered (29.8 million positions) and another 23.5 million high-confidence ancestral alleles were novel, expanding the available reference list to improve the accuracies of genetic analyses involving ancestral alleles. The high concordance of the results with previous studies implies that our approach using genomic sequence variants and a likelihood ratio test to determine ancestral alleles is appropriate. CONCLUSIONS: Considering the high concordance of ancestral alleles across studies, the ancestral alleles determined in this study including those not previously listed, particularly those with high-probability estimates, may be used for further genetic analyses with reasonable accuracy. Our approach that used predetermined variants in species and the likelihood ratio test to determine ancestral alleles is applicable to other species for which sequence level genotypes are available.


Subject(s)
Genome-Wide Association Study , Genomics , Cattle , Animals , Alleles , Likelihood Functions , Genotype , Genomics/methods , Polymorphism, Single Nucleotide
3.
Genet Sel Evol ; 56(1): 42, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844868

ABSTRACT

BACKGROUND: Female fertility is an important trait in dairy cattle. Identifying putative causal variants associated with fertility may help to improve the accuracy of genomic prediction of fertility. Combining expression data (eQTL) of genes, exons, gene splicing and allele specific expression is a promising approach to fine map QTL to get closer to the causal mutations. Another approach is to identify genomic differences between cows selected for high and low fertility and a selection experiment in New Zealand has created exactly this resource. Our objective was to combine multiple types of expression data, fertility traits and allele frequency in high- (POS) and low-fertility (NEG) cows with a genome-wide association study (GWAS) on calving interval in Australian cows to fine-map QTL associated with fertility in both Australia and New Zealand dairy cattle populations. RESULTS: Variants that were significantly associated with calving interval (CI) were strongly enriched for variants associated with gene, exon, gene splicing and allele-specific expression, indicating that there is substantial overlap between QTL associated with CI and eQTL. We identified 671 genes with significant differential expression between POS and NEG cows, with the largest fold change detected for the CCDC196 gene on chromosome 10. Our results provide numerous candidate genes associated with female fertility in dairy cattle, including GYS2 and TIGAR on chromosome 5 and SYT3 and HSD17B14 on chromosome 18. Multiple QTL regions were located in regions with large numbers of copy number variants (CNV). To identify the causal mutations for these variants, long read sequencing may be useful. CONCLUSIONS: Variants that were significantly associated with CI were highly enriched for eQTL. We detected 671 genes that were differentially expressed between POS and NEG cows. Several QTL detected for CI overlapped with eQTL, providing candidate genes for fertility in dairy cattle.


Subject(s)
Fertility , Genome-Wide Association Study , Quantitative Trait Loci , Animals , Cattle/genetics , Fertility/genetics , Female , Genome-Wide Association Study/veterinary , Polymorphism, Single Nucleotide , Chromosome Mapping , Gene Frequency
4.
Genet Sel Evol ; 56(1): 22, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38549172

ABSTRACT

BACKGROUND: Bovine lactoferrin (Lf) is an iron absorbing whey protein with antibacterial, antiviral, and antifungal activity. Lactoferrin is economically valuable and has an extremely variable concentration in milk, partly driven by environmental influences such as milking frequency, involution, or mastitis. A significant genetic influence has also been previously observed to regulate lactoferrin content in milk. Here, we conducted genetic mapping of lactoferrin protein concentration in conjunction with RNA-seq, ChIP-seq, and ATAC-seq data to pinpoint candidate causative variants that regulate lactoferrin concentrations in milk. RESULTS: We identified a highly-significant lactoferrin protein quantitative trait locus (pQTL), as well as a cis lactotransferrin (LTF) expression QTL (cis-eQTL) mapping to the LTF locus. Using ChIP-seq and ATAC-seq datasets representing lactating mammary tissue samples, we also report a number of regions where the openness of chromatin is under genetic influence. Several of these also show highly significant QTL with genetic signatures similar to those highlighted through pQTL and eQTL analysis. By performing correlation analysis between these QTL, we revealed an ATAC-seq peak in the putative promotor region of LTF, that highlights a set of 115 high-frequency variants that are potentially responsible for these effects. One of the 115 variants (rs110000337), which maps within the ATAC-seq peak, was predicted to alter binding sites of transcription factors known to be involved in lactation-related pathways. CONCLUSIONS: Here, we report a regulatory haplotype of 115 variants with conspicuously large impacts on milk lactoferrin concentration. These findings could enable the selection of animals for high-producing specialist herds.


Subject(s)
Lactation , Lactoferrin , Milk , Animals , Female , Haplotypes , Lactation/genetics , Lactoferrin/genetics , Lactoferrin/analysis , Lactoferrin/metabolism , Milk/chemistry , Milk/metabolism , Cattle
5.
Genet Sel Evol ; 55(1): 9, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36721111

ABSTRACT

Studies have demonstrated that structural variants (SV) play a substantial role in the evolution of species and have an impact on Mendelian traits in the genome. However, unlike small variants (< 50 bp), it has been challenging to accurately identify and genotype SV at the population scale using short-read sequencing. Long-read sequencing technologies are becoming competitively priced and can address several of the disadvantages of short-read sequencing for the discovery and genotyping of SV. In livestock species, analysis of SV at the population scale still faces challenges due to the lack of resources, high costs, technological barriers, and computational limitations. In this review, we summarize recent progress in the characterization of SV in the major livestock species, the obstacles that still need to be overcome, as well as the future directions in this growing field. It seems timely that research communities pool resources to build global population-scale long-read sequencing consortiums for the major livestock species for which the application of genomic tools has become cost-effective.


Subject(s)
Genomics , Livestock , Animals , Livestock/genetics , Genotype , Phenotype
6.
BMC Genomics ; 23(1): 815, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36482302

ABSTRACT

BACKGROUND: Causal variants for complex traits, such as eQTL are often found in non-coding regions of the genome, where they are hypothesised to influence phenotypes by regulating gene expression. Many regulatory regions are marked by histone modifications, which can be assayed by chromatin immunoprecipitation followed by sequencing (ChIP-seq). Sequence reads from ChIP-seq form peaks at putative regulatory regions, which may reflect the amount of regulatory activity at this region. Therefore, eQTL which are also associated with differences in histone modifications are excellent candidate causal variants. RESULTS: We assayed the histone modifications H3K4Me3, H3K4Me1 and H3K27ac and mRNA in the mammary gland of up to 400 animals. We identified QTL for peak height (histone QTL), exon expression (eeQTL), allele specific expression (aseQTL) and allele specific binding (asbQTL). By intersecting these results, we identify variants which may influence gene expression by altering regulatory regions of the genome, and may be causal variants for other traits. Lastly, we find that these variants are found in putative transcription factor binding sites, identifying a mechanism for the effect of many eQTL. CONCLUSIONS: We find that allele specific and traditional QTL analysis often identify the same genetic variants and provide evidence that many eQTL are regulatory variants which alter activity at regulatory regions of the bovine genome. Our work provides methodological and biological updates on how regulatory mechanisms interplay at multi-omics levels.


Subject(s)
Histone Code , Multiomics , Cattle/genetics , Animals , Genetic Variation , Gene Expression
7.
Proc Natl Acad Sci U S A ; 116(39): 19398-19408, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31501319

ABSTRACT

Many genome variants shaping mammalian phenotype are hypothesized to regulate gene transcription and/or to be under selection. However, most of the evidence to support this hypothesis comes from human studies. Systematic evidence for regulatory and evolutionary signals contributing to complex traits in a different mammalian model is needed. Sequence variants associated with gene expression (expression quantitative trait loci [eQTLs]) and concentration of metabolites (metabolic quantitative trait loci [mQTLs]) and under histone-modification marks in several tissues were discovered from multiomics data of over 400 cattle. Variants under selection and evolutionary constraint were identified using genome databases of multiple species. These analyses defined 30 sets of variants, and for each set, we estimated the genetic variance the set explained across 34 complex traits in 11,923 bulls and 32,347 cows with 17,669,372 imputed variants. The per-variant trait heritability of these sets across traits was highly consistent (r > 0.94) between bulls and cows. Based on the per-variant heritability, conserved sites across 100 vertebrate species and mQTLs ranked the highest, followed by eQTLs, young variants, those under histone-modification marks, and selection signatures. From these results, we defined a Functional-And-Evolutionary Trait Heritability (FAETH) score indicating the functionality and predicted heritability of each variant. In additional 7,551 cattle, the high FAETH-ranking variants had significantly increased genetic variances and genomic prediction accuracies in 3 production traits compared to the low FAETH-ranking variants. The FAETH framework combines the information of gene regulation, evolution, and trait heritability to rank variants, and the publicly available FAETH data provide a set of biological priors for cattle genomic selection worldwide.


Subject(s)
Biological Evolution , Cattle/genetics , Gene Expression Regulation/genetics , Multifactorial Inheritance/genetics , Animals , Breeding , Databases, Genetic , Female , Genetic Variation , Genome/genetics , Genome-Wide Association Study , Male , Phenotype , Quantitative Trait Loci/genetics , Selection, Genetic
8.
Genet Sel Evol ; 53(1): 8, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33461502

ABSTRACT

BACKGROUND: Variants that regulate transcription, such as expression quantitative trait loci (eQTL), have shown enrichment in genome-wide association studies (GWAS) for mammalian complex traits. However, no study has reported eQTL in sheep, although it is an important agricultural species for which many GWAS of complex meat traits have been conducted. Using RNA sequence data produced from liver and muscle from 149 sheep and imputed whole-genome single nucleotide polymorphisms (SNPs), our aim was to dissect the genetic architecture of the transcriptome by associating sheep genotypes with three major molecular phenotypes including gene expression (geQTL), exon expression (eeQTL) and RNA splicing (sQTL). We also examined these three types of eQTL for their enrichment in GWAS of multi-meat traits and fatty acid profiles. RESULTS: Whereas a relatively small number of molecular phenotypes were significantly heritable (h2 > 0, P < 0.05), their mean heritability ranged from 0.67 to 0.73 for liver and from 0.71 to 0.77 for muscle. Association analysis between molecular phenotypes and SNPs within ± 1 Mb identified many significant cis-eQTL (false discovery rate, FDR < 0.01). The median distance between the eQTL and transcription start sites (TSS) ranged from 68 to 153 kb across the three eQTL types. The number of common variants between geQTL, eeQTL and sQTL within each tissue, and the number of common variants between liver and muscle within each eQTL type were all significantly (P < 0.05) larger than expected by chance. The identified eQTL were significantly (P < 0.05) enriched in GWAS hits associated with 56 carcass traits and fatty acid profiles. For example, several geQTL in muscle mapped to the FAM184B gene, hundreds of sQTL in liver and muscle mapped to the CAST gene, and hundreds of sQTL in liver mapped to the C6 gene. These three genes are associated with body composition or fatty acid profiles. CONCLUSIONS: We detected a large number of significant eQTL and found that the overlap of variants between eQTL types and tissues was prevalent. Many eQTL were also QTL for meat traits. Our study fills a gap in the knowledge on the regulatory variants and their role in complex traits for the sheep model.


Subject(s)
Liver/metabolism , Muscle, Skeletal/metabolism , Polymorphism, Genetic , Quantitative Trait Loci , Red Meat/standards , Sheep/genetics , Animals , Fatty Acids/metabolism , Female , Male , Quantitative Trait, Heritable , Transcriptome
9.
J Dairy Sci ; 104(1): 575-587, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33162069

ABSTRACT

Feed efficiency and energy balance are important traits underpinning profitability and environmental sustainability in animal production. They are complex traits, and our understanding of their underlying biology is currently limited. One measure of feed efficiency is residual feed intake (RFI), which is the difference between actual and predicted intake. Variation in RFI among individuals is attributable to the metabolic efficiency of energy utilization. High RFI (H_RFI) animals require more energy per unit of weight gain or milk produced compared with low RFI (L_RFI) animals. Energy balance (EB) is a closely related trait calculated very similarly to RFI. Cellular energy metabolism in mitochondria involves mitochondrial protein (MiP) encoded by both nuclear (NuMiP) and mitochondrial (MtMiP) genomes. We hypothesized that MiP genes are differentially expressed (DE) between H_RFI and L_RFI animal groups and similarly between negative and positive EB groups. Our study aimed to characterize MiP gene expression in white blood cells of H_RFI and L_RFI cows using RNA sequencing to identify genes and biological pathways associated with feed efficiency in dairy cattle. We used the top and bottom 14 cows ranked for RFI and EB out of 109 animals as H_RFI and L_RFI, and positive and negative EB groups, respectively. The gene expression counts across all nuclear and mitochondrial genes for animals in each group were used for differential gene expression analyses, weighted gene correlation network analysis, functional enrichment, and identification of hub genes. Out of 244 DE genes between RFI groups, 38 were MiP genes. The DE genes were enriched for the oxidative phosphorylation (OXPHOS) and ribosome pathways. The DE MiP genes were underexpressed in L_RFI (and negative EB) compared with the H_RFI (and positive EB) groups, suggestive of reduced mitochondrial activity in the L_RFI group. None of the MtMiP genes were among the DE MiP genes between the groups, which suggests a non-rate limiting role of MtMiP genes in feed efficiency and warrants further investigation. The role of MiP, particularly the NuMiP and OXPHOS pathways in RFI, was also supported by our gene correlation network analysis and the hub gene identification. We validated the findings in an independent data set. Overall, our study suggested that differences in feed efficiency in dairy cows may be linked to differences in cellular energy demand. This study broadens our knowledge of the biology of feed efficiency in dairy cattle.


Subject(s)
Animal Feed , Cattle/genetics , Mitochondrial Proteins/genetics , Oxidative Phosphorylation , Animals , Cattle/metabolism , Eating/genetics , Energy Metabolism , Female , Gene Expression , Genome , Lactation , Milk , Phenotype , Sequence Analysis, RNA/veterinary
10.
BMC Genomics ; 21(1): 720, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33076826

ABSTRACT

BACKGROUND: Mutations in the mitochondrial genome have been implicated in mitochondrial disease, often characterized by impaired cellular energy metabolism. Cellular energy metabolism in mitochondria involves mitochondrial proteins (MP) from both the nuclear (NuMP) and mitochondrial (MtMP) genomes. The expression of MP genes in tissues may be tissue specific to meet varying specific energy demands across the tissues. Currently, the characteristics of MP gene expression in tissues of dairy cattle are not well understood. In this study, we profile the expression of MP genes in 29 adult and six foetal tissues in dairy cattle using RNA sequencing and gene expression analyses: particularly differential gene expression and co-expression network analyses. RESULTS: MP genes were differentially expressed (DE; over-expressed or under-expressed) across tissues in cattle. All 29 tissues showed DE NuMP genes in varying proportions of over-expression and under-expression. On the other hand, DE of MtMP genes was observed in < 50% of tissues and notably MtMP genes within a tissue was either all over-expressed or all under-expressed. A high proportion of NuMP (up to 60%) and MtMP (up to 100%) genes were over-expressed in tissues with expected high metabolic demand; heart, skeletal muscles and tongue, and under-expressed (up to 45% of NuMP, 77% of MtMP genes) in tissues with expected low metabolic rates; leukocytes, thymus, and lymph nodes. These tissues also invariably had the expression of all MtMP genes in the direction of dominant NuMP genes expression. The NuMP and MtMP genes were highly co-expressed across tissues and co-expression of genes in a cluster were non-random and functionally enriched for energy generation pathway. The differential gene expression and co-expression patterns were validated in independent cow and sheep datasets. CONCLUSIONS: The results of this study support the concept that there are biological interaction of MP genes from the mitochondrial and nuclear genomes given their over-expression in tissues with high energy demand and co-expression in tissues. This highlights the importance of considering MP genes from both genomes in future studies related to mitochondrial functions and traits related to energy metabolism.


Subject(s)
Genome, Mitochondrial , Mitochondrial Proteins , Animals , Cattle/genetics , Energy Metabolism/genetics , Female , Gene Expression , Gene Expression Profiling , Sheep
11.
BMC Genomics ; 20(1): 888, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31752687

ABSTRACT

BACKGROUND: DNA methylation has been shown to be involved in many biological processes, including X chromosome inactivation in females, paternal genomic imprinting, and others. RESULTS: Based on the correlation patterns of methylation levels of neighboring CpG sites among 28 sperm whole genome bisulfite sequencing (WGBS) data (486 × coverage), we obtained 31,272 methylation haplotype blocks (MHBs). Among them, we defined conserved methylated regions (CMRs), variably methylated regions (VMRs) and highly variably methylated regions (HVMRs) among individuals, and showed that HVMRs might play roles in transcriptional regulation and function in complex traits variation and adaptive evolution by integrating evidence from traditional and molecular quantitative trait loci (QTL), and selection signatures. Using a weighted correlation network analysis (WGCNA), we also detected a co-regulated module of HVMRs that was significantly associated with reproduction traits, and enriched for glycosyltransferase genes, which play critical roles in spermatogenesis and fertilization. Additionally, we identified 46 VMRs significantly associated with reproduction traits, nine of which were regulated by cis-SNPs, implying the possible intrinsic relationships among genomic variations, DNA methylation, and phenotypes. These significant VMRs were co-localized (± 10 kb) with genes related to sperm motility and reproduction, including ZFP36L1, CRISP2 and HGF. We provided further evidence that rs109326022 within a predominant QTL on BTA18 might influence the reproduction traits through regulating the methylation level of nearby genes JOSD2 and ASPDH in sperm. CONCLUSION: In summary, our results demonstrated associations of sperm DNA methylation with reproduction traits, highlighting the potential of epigenomic information in genomic improvement programs for cattle.


Subject(s)
Cattle/genetics , DNA Methylation , Reproduction/genetics , Spermatozoa/metabolism , Animals , Biological Variation, Population , Cattle/metabolism , Genetic Variation , Haplotypes , Male , Quantitative Trait Loci
12.
Genet Sel Evol ; 51(1): 1, 2019 Jan 17.
Article in English | MEDLINE | ID: mdl-30654735

ABSTRACT

BACKGROUND: The use of whole-genome sequence (WGS) data for genomic prediction and association studies is highly desirable because the causal mutations should be present in the data. The sequencing of 935 sheep from a range of breeds provides the opportunity to impute sheep genotyped with single nucleotide polymorphism (SNP) arrays to WGS. This study evaluated the accuracy of imputation from SNP genotypes to WGS using this reference population of 935 sequenced sheep. RESULTS: The accuracy of imputation from the Ovine Infinium® HD BeadChip SNP (~ 500 k) to WGS was assessed for three target breeds: Merino, Poll Dorset and F1 Border Leicester × Merino. Imputation accuracy was highest for the Poll Dorset breed, although there were more Merino individuals in the sequenced reference population than Poll Dorset individuals. In addition, empirical imputation accuracies were higher (by up to 1.7%) when using larger multi-breed reference populations compared to using a smaller single-breed reference population. The mean accuracy of imputation across target breeds using the Minimac3 or the FImpute software was 0.94. The empirical imputation accuracy varied considerably across the genome; six chromosomes carried regions of one or more Mb with a mean imputation accuracy of < 0.7. Imputation accuracy in five variant annotation classes ranged from 0.87 (missense) up to 0.94 (intronic variants), where lower accuracy corresponded to higher proportions of rare alleles. The imputation quality statistic reported from Minimac3 (R2) had a clear positive relationship with the empirical imputation accuracy. Therefore, by first discarding imputed variants with an R2 below 0.4, the mean empirical accuracy across target breeds increased to 0.97. Although accuracy of genomic prediction was less affected by filtering on R2 in a multi-breed population of sheep with imputed WGS, the genomic heritability clearly tended to be lower when using variants with an R2 ≤ 0.4. CONCLUSIONS: The mean imputation accuracy was high for all target breeds and was increased by combining smaller breed sets into a multi-breed reference. We found that the Minimac3 software imputation quality statistic (R2) was a useful indicator of empirical imputation accuracy, enabling removal of very poorly imputed variants before downstream analyses.


Subject(s)
Genome-Wide Association Study/standards , Sheep/genetics , Software/standards , Whole Genome Sequencing/standards , Animals , Genome-Wide Association Study/veterinary , Polymorphism, Single Nucleotide , Whole Genome Sequencing/veterinary
13.
BMC Genomics ; 19(1): 793, 2018 Nov 03.
Article in English | MEDLINE | ID: mdl-30390624

ABSTRACT

BACKGROUND: The mutations changing the expression level of a gene, or expression quantitative trait loci (eQTL), can be identified by testing the association between genetic variants and gene expression in multiple individuals (eQTL mapping), or by comparing the expression of the alleles in a heterozygous individual (allele specific expression or ASE analysis). The aims of the study were to find and compare ASE and local eQTL in 4 bovine RNA-sequencing (RNA-Seq) datasets, validate them in an independent ASE study and investigate if they are associated with complex trait variation. RESULTS: We present a novel method for distinguishing between ASE driven by polymorphisms in cis and parent of origin effects. We found that single nucleotide polymorphisms (SNPs) driving ASE are also often local eQTL and therefore presumably cis eQTL. These SNPs often, but not always, affect gene expression in multiple tissues and, when they do, the allele increasing expression is usually the same. However, there were systematic differences between ASE and local eQTL and between tissues and breeds. We also found that SNPs significantly associated with gene expression (p < 0.001) were likely to influence some complex traits (p < 0.001), which means that some mutations influence variation in complex traits by changing the expression level of genes. CONCLUSION: We conclude that ASE detects phenomenon that overlap with local eQTL, but there are also systematic differences between the SNPs discovered by the two methods. Some mutations influencing complex traits are actually eQTL and can be discovered using RNA-Seq including eQTL in the genes CAST, CAPN1, LCORL and LEPROTL1.


Subject(s)
Alleles , Gene Expression , Genetic Variation , Multifactorial Inheritance , Quantitative Trait Loci , Quantitative Trait, Heritable , Animals , Cattle , Chromosome Mapping , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Reproducibility of Results , Sequence Analysis, RNA
14.
BMC Genomics ; 19(1): 395, 2018 May 24.
Article in English | MEDLINE | ID: mdl-29793448

ABSTRACT

BACKGROUND: Topological association domains (TADs) are chromosomal domains characterised by frequent internal DNA-DNA interactions. The transcription factor CTCF binds to conserved DNA sequence patterns called CTCF binding motifs to either prohibit or facilitate chromosomal interactions. TADs and CTCF binding motifs control gene expression, but they are not yet well defined in the bovine genome. In this paper, we sought to improve the annotation of bovine TADs and CTCF binding motifs, and assess whether the new annotation can reduce the search space for cis-regulatory variants. RESULTS: We used genomic synteny to map TADs and CTCF binding motifs from humans, mice, dogs and macaques to the bovine genome. We found that our mapped TADs exhibited the same hallmark properties of those sourced from experimental data, such as housekeeping genes, transfer RNA genes, CTCF binding motifs, short interspersed elements, H3K4me3 and H3K27ac. We showed that runs of genes with the same pattern of allele-specific expression (ASE) (either favouring paternal or maternal allele) were often located in the same TAD or between the same conserved CTCF binding motifs. Analyses of variance showed that when averaged across all bovine tissues tested, TADs explained 14% of ASE variation (standard deviation, SD: 0.056), while CTCF explained 27% (SD: 0.078). Furthermore, we showed that the quantitative trait loci (QTLs) associated with gene expression variation (eQTLs) or ASE variation (aseQTLs), which were identified from mRNA transcripts from 141 lactating cows' white blood and milk cells, were highly enriched at putative bovine CTCF binding motifs. The linearly-furthermost, and most-significant aseQTL and eQTL for each genic target were located within the same TAD as the gene more often than expected (Chi-Squared test P-value < 0.001). CONCLUSIONS: Our results suggest that genomic synteny can be used to functionally annotate conserved transcriptional components, and provides a tool to reduce the search space for causative regulatory variants in the bovine genome.


Subject(s)
CCCTC-Binding Factor/metabolism , Genomics , Nucleotide Motifs , Animals , Cattle , Protein Binding , Quantitative Trait Loci/genetics
15.
BMC Genomics ; 19(1): 521, 2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29973141

ABSTRACT

BACKGROUND: Mammalian phenotypes are shaped by numerous genome variants, many of which may regulate gene transcription or RNA splicing. To identify variants with regulatory functions in cattle, an important economic and model species, we used sequence variants to map a type of expression quantitative trait loci (expression QTLs) that are associated with variations in the RNA splicing, i.e., sQTLs. To further the understanding of regulatory variants, sQTLs were compare with other two types of expression QTLs, 1) variants associated with variations in gene expression, i.e., geQTLs and 2) variants associated with variations in exon expression, i.e., eeQTLs, in different tissues. RESULTS: Using whole genome and RNA sequence data from four tissues of over 200 cattle, sQTLs identified using exon inclusion ratios were verified by matching their effects on adjacent intron excision ratios. sQTLs contained the highest percentage of variants that are within the intronic region of genes and contained the lowest percentage of variants that are within intergenic regions, compared to eeQTLs and geQTLs. Many geQTLs and sQTLs are also detected as eeQTLs. Many expression QTLs, including sQTLs, were significant in all four tissues and had a similar effect in each tissue. To verify such expression QTL sharing between tissues, variants surrounding (±1 Mb) the exon or gene were used to build local genomic relationship matrices (LGRM) and estimated genetic correlations between tissues. For many exons, the splicing and expression level was determined by the same cis additive genetic variance in different tissues. Thus, an effective but simple-to-implement meta-analysis combining information from three tissues is introduced to increase power to detect and validate sQTLs. sQTLs and eeQTLs together were more enriched for variants associated with cattle complex traits, compared to geQTLs. Several putative causal mutations were identified, including an sQTL at Chr6:87392580 within the 5th exon of kappa casein (CSN3) associated with milk production traits. CONCLUSIONS: Using novel analytical approaches, we report the first identification of numerous bovine sQTLs which are extensively shared between multiple tissue types. The significant overlaps between bovine sQTLs and complex traits QTL highlight the contribution of regulatory mutations to phenotypic variations.


Subject(s)
Genetic Variation , RNA Splicing , Animals , Blood Cells/metabolism , Caseins/genetics , Cattle , Exons , Female , Liver/metabolism , Mammary Glands, Animal/metabolism , Muscles/metabolism , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Transcriptome
18.
Genet Sel Evol ; 49(1): 13, 2017 01 25.
Article in English | MEDLINE | ID: mdl-28122487

ABSTRACT

BACKGROUND: Several examples of structural variation (SV) affecting phenotypic traits have been reported in cattle. Currently the identification of SV from whole-genome sequence data (WGS) suffers from a high false positive rate. Our aim was to construct a high quality set of SV calls in cattle using WGS data. First, we tested two SV detection programs, Breakdancer and Pindel, and the overlap of these methods, on simulated sequence data to determine their precision and sensitivity. We then identified population SV from WGS of 252 Holstein and 64 Jersey bulls based on the overlapping calls from the two programs. In addition, we validated an overlapped SV set in 28 twice-sequenced Holstein individuals, and in another two validated sets (one for each breed) that were transmitted from sire to son. We also tested whether highly conserved gene sets across eukaryotes and recently expanded gene families in bovine were depleted and enriched, respectively, for SV. RESULTS: In empirical WGS data, 17,518 SV covering 27.36 Mb were found in the Holstein population and 4285 SV covering 8.74 Mb in the Jersey population, of which 4.62 Mb of SV overlapped between Holsteins and Jerseys. A total of 11,534 candidate SV covering 5.64 Mb were validated in the 28 twice-sequenced individuals, while 3.49 and 0.67 Mb of SV were validated from Holstein and Jersey sire-son transmission, respectively. Only eight of 237 core eukaryotic genes had at least a 50-bp overlap with an SV from our validated sets, suggesting that conserved genes are depleted for SV (p < 0.05). In addition, we observed that recently expanded gene families were significantly more associated with SV than other genes. Long interspersed nuclear elements-1 were enriched for deletions when compared to the rest of the genome (p = 0.0035). CONCLUSIONS: We reported SV from 252 Holstein and 64 Jersey individuals. A considerable proportion of Jersey population SV (53.5%) were also found in Holstein. In contrast, about 76.90% sire-son transmission validated SV were present in Jerseys and Holsteins. The enrichment of SV in expanding gene families suggests that SV can be a source of genetic variation for evolution.


Subject(s)
Genetic Variation , Genome-Wide Association Study , Genome , Genomics , Animals , Breeding , Cattle , Computational Biology/methods , Computer Simulation , DNA Copy Number Variations , Evolution, Molecular , Genetics, Population , Genomics/methods , High-Throughput Nucleotide Sequencing , INDEL Mutation , Multigene Family , Polymorphism, Single Nucleotide , Reproducibility of Results
19.
Mamm Genome ; 27(1-2): 81-97, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26613780

ABSTRACT

Dairy cattle are an interesting model for gaining insights into the genes responsible for the large variation between and within mammalian species in the protein and fat content of their milk and their milk volume. Large numbers of phenotypes for these traits are available, as well as full genome sequence of key founders of modern dairy cattle populations. In twenty target QTL regions affecting milk production traits, we imputed full genome sequence variant genotypes into a population of 16,721 Holstein and Jersey cattle with excellent phenotypes. Association testing was used to identify variants within each target region, and gene expression data were used to identify possible gene candidates. There was statistical support for imputed sequence variants in or close to BTRC, MGST1, SLC37A1, STAT5A, STAT5B, PAEP, VDR, CSF2RB, MUC1, NCF4, and GHDC associated with milk production, and EPGN for calving interval. Of these candidates, analysis of RNA-Seq data demonstrated that PAEP, VDR, SLC37A1, GHDC, MUC1, CSF2RB, and STAT5A were highly differentially expressed in mammary gland compared to 15 other tissues. For nine of the other target regions, the most significant variants were in non-coding DNA. Genomic predictions in a third dairy breed (Australian Reds) using sequence variants in only these candidate genes were for some traits more accurate than genomic predictions from 632,003 common SNP on the Bovine HD array. The genes identified in this study are interesting candidates for improving milk production in cattle and could be investigated for novel biological mechanisms driving lactation traits in other mammals.


Subject(s)
Chromosomes, Mammalian/chemistry , Dairying , Lactation/genetics , Milk/metabolism , Quantitative Trait Loci , Quantitative Trait, Heritable , Animals , Breeding , Cattle , Chromosome Mapping , Dietary Fats/metabolism , Female , Genome-Wide Association Study , Genotype , Mammary Glands, Animal/anatomy & histology , Mammary Glands, Animal/metabolism , Microarray Analysis , Milk/chemistry , Phenotype , Polymorphism, Single Nucleotide
20.
Biol Reprod ; 94(1): 19, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26607721

ABSTRACT

Despite the importance of fertility in humans and livestock, there has been little success dissecting the genetic basis of fertility. Our hypothesis was that genes differentially expressed in the endometrium and corpus luteum on Day 13 of the estrous cycle between cows with either good or poor genetic merit for fertility would be enriched for genetic variants associated with fertility. We combined a unique genetic model of fertility (cattle that have been selected for high and low fertility and show substantial difference in fertility) with gene expression data from these cattle and genome-wide association study (GWAS) results in ∼20,000 cattle to identify quantitative trait loci (QTL) regions and sequence variants associated with genetic variation in fertility. Two hundred and forty-five QTL regions and 17 sequence variants associated primarily with prostaglandin F2alpha, steroidogenesis, mRNA processing, energy status, and immune-related processes were identified. Ninety-three of the QTL regions were validated by two independent GWAS, with signals for fertility detected primarily on chromosomes 18, 5, 7, 8, and 29. Plausible causative mutations were identified, including one missense variant significantly associated with fertility and predicted to affect the protein function of EIF4EBP3. The results of this study enhance our understanding of 1) the contribution of the endometrium and corpus luteum transcriptome to phenotypic fertility differences and 2) the genetic architecture of fertility in dairy cattle. Including these variants in predictions of genomic breeding values may improve the rate of genetic gain for this critical trait.


Subject(s)
Corpus Luteum/metabolism , Fertility/genetics , Fertility/physiology , Gene Expression/genetics , Genetic Variation/genetics , Genetic Variation/physiology , Animals , Cattle , Chromosomes/genetics , Dinoprost/biosynthesis , Dinoprost/genetics , Endometrium/metabolism , Endometrium/physiology , Eukaryotic Initiation Factor-4F/metabolism , Female , Genome-Wide Association Study , Quantitative Trait Loci , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL