Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Publication year range
1.
Anal Chem ; 96(6): 2506-2513, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38294351

ABSTRACT

Cross-linking mass spectrometry (XL-MS) has become a very useful tool for studying protein complexes and interactions in living systems. It enables the investigation of many large and dynamic assemblies in their native state, providing an unbiased view of their protein interactions and restraints for integrative modeling. More researchers are turning toward trying XL-MS to probe their complexes of interest, especially in their native environments. However, due to the presence of other potentially higher abundant proteins, sufficient cross-links on a system of interest may not be reached to achieve satisfactory structural and interaction information. There are currently no rules for predicting whether XL-MS experiments are likely to work or not; in other words, if a protein complex of interest will lead to useful XL-MS data. Here, we show that a simple iBAQ (intensity-based absolute quantification) analysis performed from trypsin digest data can provide a good understanding of whether proteins of interest are abundant enough to achieve successful cross-linking data. Comparing our findings to large-scale data on diverse systems from several other groups, we show that proteins of interest should be at least in the top 20% abundance range to expect more than one cross-link found per protein. We foresee that this guideline is a good starting point for researchers who would like to use XL-MS to study their protein of interest and help ensure a successful cross-linking experiment from the beginning. Data are available via ProteomeXchange with identifier PXD045792.


Subject(s)
Proteins , Proteins/analysis , Mass Spectrometry/methods , Cross-Linking Reagents/chemistry
2.
Microbes Infect ; : 105296, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38199266

ABSTRACT

In the last decade, MALDI-TOF Mass Spectrometry (MALDI-TOF MS) has been introduced and broadly accepted by clinical laboratory laboratories throughout the world as a powerful and efficient tool for rapid microbial identification. During the MALDI-TOF MS process, microbes are identified using either intact cells or cell extracts. The process is rapid, sensitive, and economical in terms of both labor and costs involved. Whilst MALDI-TOF MS is currently the gold-standard, it suffers from several shortcomings such as lack of direct information on antibiotic resistance, poor depth of analysis and insufficient discriminatory power for the distinction of closely related bacterial species or for reliably sub-differentiating isolates to the level of clones or strains. Thus, new approaches targeting proteins and allowing a better characterization of bacterial strains are strongly needed, if possible, on a very short time scale after sample collection in the hospital. Bottom-up proteomics (BUP) is a nice alternative to MALDI-TOF MS, offering the possibility for in-depth proteome analysis. Top-down proteomics (TDP) provides the highest molecular precision in proteomics, allowing the characterization of proteins at the proteoform level. A number of studies have already demonstrated the potential of these techniques in clinical microbiology. In this review, we will discuss the current state-of-the-art of MALDI-TOF MS for the rapid microbial identification and detection of resistance to antibiotics and describe emerging approaches, including bottom-up and top-down proteomics as well as ambient MS technologies.

3.
Front Mol Biosci ; 11: 1399225, 2024.
Article in English | MEDLINE | ID: mdl-38962283

ABSTRACT

Periostin is a matricellular protein encoded by the POSTN gene that is alternatively spliced to produce ten different periostin isoforms with molecular weights ranging from 78 to 91 kDa. It is known to promote fibrillogenesis, organize the extracellular matrix, and bind integrin-receptors to induce cell signaling. As well as being a key component of the wound healing process, it is also known to participate in the pathogenesis of different diseases including atopic dermatitis, asthma, and cancer. In both health and disease, the functions of the different periostin isoforms are largely unknown. The ability to precisely determine the isoform profile of a given human sample is fundamental for characterizing their functional significance. Identification of periostin isoforms is most often carried out at the transcriptional level using RT-PCR based approaches, but due to high sequence homogeneity, identification on the protein level has always been challenging. Top-down proteomics, where whole proteins are measured by mass spectrometry, offers a fast and reliable method for isoform identification. Here we present a fully developed top-down mass spectrometry assay for the characterization of periostin splice isoforms at the protein level.

4.
Nat Commun ; 15(1): 2414, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499587

ABSTRACT

Type IV pili (T4P) are prevalent, polymeric surface structures in pathogenic bacteria, making them ideal targets for effective vaccines. However, bacteria have evolved efficient strategies to evade type IV pili-directed antibody responses. Neisseria meningitidis are prototypical type IV pili-expressing Gram-negative bacteria responsible for life threatening sepsis and meningitis. This species has evolved several genetic strategies to modify the surface of its type IV pili, changing pilin subunit amino acid sequence, nature of glycosylation and phosphoforms, but how these modifications affect antibody binding at the structural level is still unknown. Here, to explore this question, we determine cryo-electron microscopy (cryo-EM) structures of pili of different sequence types with sufficiently high resolution to visualize posttranslational modifications. We then generate nanobodies directed against type IV pili which alter pilus function in vitro and in vivo. Cyro-EM in combination with molecular dynamics simulation of the nanobody-pilus complexes reveals how the different types of pili surface modifications alter nanobody binding. Our findings shed light on the impressive complementarity between the different strategies used by bacteria to avoid antibody binding. Importantly, we also show that structural information can be used to make informed modifications in nanobodies as countermeasures to these immune evasion mechanisms.


Subject(s)
Single-Domain Antibodies , Cryoelectron Microscopy , Single-Domain Antibodies/metabolism , Fimbriae, Bacterial/metabolism , Fimbriae Proteins/metabolism , Amino Acid Sequence
5.
J Am Soc Mass Spectrom ; 35(5): 902-911, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38609335

ABSTRACT

Traditionally, mass spectrometry (MS) output is the ion abundance plotted versus the ionic mass-to-charge ratio m/z. While employing only commercially available equipment, Charge Determination Analysis (CHARDA) adds a third dimension to MS, estimating for individual peaks their charge states z starting from z = 1 and color coding z in m/z spectra. CHARDA combines the analysis of ion signal decay rates in the time-domain data (transients) in Fourier transform (FT) MS with the interrogation of mass defects (fractional mass) of biopolymers. Being applied to individual isotopic peaks in a complex protein tandem (MS/MS) data set, CHARDA aids peptide mass spectra interpretation by facilitating charge-state deconvolution of large ionic species in crowded regions, estimating z even in the absence of an isotopic distribution (e.g., for monoisotopic mass spectra). CHARDA is fast, robust, and consistent with conventional FTMS and FTMS/MS data acquisition procedures. An effective charge-state resolution Rz ≥ 6 is obtained with the potential for further improvements.


Subject(s)
Fourier Analysis , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Biopolymers/chemistry , Biopolymers/analysis , Ions/chemistry , Color
6.
Article in English | MEDLINE | ID: mdl-39006170

ABSTRACT

Proteoforms, which arise from post-translational modifications, genetic polymorphisms and RNA splice variants, play a pivotal role as drivers in biology. Understanding proteoforms is essential to unravel the intricacies of biological systems and bridge the gap between genotypes and phenotypes. By analysing whole proteins without digestion, top-down proteomics (TDP) provides a holistic view of the proteome and can decipher protein function, uncover disease mechanisms and advance precision medicine. This Primer explores TDP, including the underlying principles, recent advances and an outlook on the future. The experimental section discusses instrumentation, sample preparation, intact protein separation, tandem mass spectrometry techniques and data collection. The results section looks at how to decipher raw data, visualize intact protein spectra and unravel data analysis. Additionally, proteoform identification, characterization and quantification are summarized, alongside approaches for statistical analysis. Various applications are described, including the human proteoform project and biomedical, biopharmaceutical and clinical sciences. These are complemented by discussions on measurement reproducibility, limitations and a forward-looking perspective that outlines areas where the field can advance, including potential future applications.

SELECTION OF CITATIONS
SEARCH DETAIL