Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Nat Chem Biol ; 12(4): 282-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26900866

ABSTRACT

TEA domain (TEAD) transcription factors bind to the coactivators YAP and TAZ and regulate the transcriptional output of the Hippo pathway, playing critical roles in organ size control and tumorigenesis. Protein S-palmitoylation attaches a fatty acid, palmitate, to cysteine residues and regulates protein trafficking, membrane localization and signaling activities. Using activity-based chemical probes, we discovered that human TEADs possess intrinsic palmitoylating enzyme-like activities and undergo autopalmitoylation at evolutionarily conserved cysteine residues under physiological conditions. We determined the crystal structures of lipid-bound TEADs and found that the lipid chain of palmitate inserts into a conserved deep hydrophobic pocket. Strikingly, palmitoylation did not alter TEAD's localization, but it was required for TEAD's binding to YAP and TAZ and was dispensable for its binding to the Vgll4 tumor suppressor. Moreover, palmitoylation-deficient TEAD mutants impaired TAZ-mediated muscle differentiation in vitro and tissue overgrowth mediated by the Drosophila YAP homolog Yorkie in vivo. Our study directly links autopalmitoylation to the transcriptional regulation of the Hippo pathway.


Subject(s)
Cysteine/metabolism , DNA-Binding Proteins/metabolism , Lipoylation , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Transcription Factors/metabolism , Amino Acid Sequence , Animals , Cell Differentiation/physiology , Cell Line , Conserved Sequence , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Fatty Acids, Unsaturated/chemistry , Hippo Signaling Pathway , Humans , Models, Molecular , Molecular Sequence Data , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/metabolism , Nuclear Proteins/genetics , Palmitates/chemistry , Protein Binding , Protein Transport , Sequence Alignment , TEA Domain Transcription Factors , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins
2.
Proc Natl Acad Sci U S A ; 110(10): 3794-9, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23431197

ABSTRACT

We have shown that resistance to inhibitors of cholinesterase 8 (Ric-8) proteins regulate an early step of heterotrimeric G protein α (Gα) subunit biosynthesis. Here, mammalian and plant cell-free translation systems were used to study Ric-8A action during Gα subunit translation and protein folding. Gα translation rates and overall produced protein amounts were equivalent in mock and Ric-8A-immunodepleted rabbit reticulocyte lysate (RRL). GDP-AlF4(-)-bound Gαi, Gαq, Gα13, and Gαs produced in mock-depleted RRL had characteristic resistance to limited trypsinolysis, showing that these G proteins were folded properly. Gαi, Gαq, and Gα13, but not Gαs produced from Ric-8A-depleted RRL were not protected from trypsinization and therefore not folded correctly. Addition of recombinant Ric-8A to the Ric-8A-depleted RRL enhanced GDP-AlF4(-)-bound Gα subunit trypsin protection. Dramatic results were obtained in wheat germ extract (WGE) that has no endogenous Ric-8 component. WGE-translated Gαq was gel filtered and found to be an aggregate. Ric-8A supplementation of WGE allowed production of Gαq that gel filtered as a ∼100 kDa Ric-8A:Gαq heterodimer. Addition of GTPγS to Ric-8A-supplemented WGE Gαq translation resulted in dissociation of the Ric-8A:Gαq heterodimer and production of functional Gαq-GTPγS monomer. Excess Gßγ supplementation of WGE did not support functional Gαq production. The molecular chaperoning function of Ric-8 is to participate in the folding of nascent G protein α subunits.


Subject(s)
GTP-Binding Protein alpha Subunits/chemistry , GTP-Binding Protein alpha Subunits/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Molecular Chaperones/metabolism , Animals , Antibodies, Monoclonal, Murine-Derived , Cattle , Cell-Free System , Chaperonin Containing TCP-1/metabolism , GTP-Binding Protein alpha Subunits/genetics , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Guanine Nucleotide Exchange Factors/immunology , Humans , Mice , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/immunology , Protein Binding , Protein Biosynthesis , Protein Folding , Rabbits , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Reticulocytes/metabolism , Triticum/metabolism
3.
Nat Med ; 30(5): 1349-1362, 2024 May.
Article in English | MEDLINE | ID: mdl-38724705

ABSTRACT

Immune checkpoint inhibitor (ICI) therapy has revolutionized oncology, but treatments are limited by immune-related adverse events, including checkpoint inhibitor colitis (irColitis). Little is understood about the pathogenic mechanisms driving irColitis, which does not readily occur in model organisms, such as mice. To define molecular drivers of irColitis, we used single-cell multi-omics to profile approximately 300,000 cells from the colon mucosa and blood of 13 patients with cancer who developed irColitis (nine on anti-PD-1 or anti-CTLA-4 monotherapy and four on dual ICI therapy; most patients had skin or lung cancer), eight controls on ICI therapy and eight healthy controls. Patients with irColitis showed expanded mucosal Tregs, ITGAEHi CD8 tissue-resident memory T cells expressing CXCL13 and Th17 gene programs and recirculating ITGB2Hi CD8 T cells. Cytotoxic GNLYHi CD4 T cells, recirculating ITGB2Hi CD8 T cells and endothelial cells expressing hypoxia gene programs were further expanded in colitis associated with anti-PD-1/CTLA-4 therapy compared to anti-PD-1 therapy. Luminal epithelial cells in patients with irColitis expressed PCSK9, PD-L1 and interferon-induced signatures associated with apoptosis, increased cell turnover and malabsorption. Together, these data suggest roles for circulating T cells and epithelial-immune crosstalk critical to PD-1/CTLA-4-dependent tolerance and barrier function and identify potential therapeutic targets for irColitis.


Subject(s)
Colitis , Immune Checkpoint Inhibitors , Intestinal Mucosa , Single-Cell Analysis , Humans , Immune Checkpoint Inhibitors/adverse effects , Colitis/chemically induced , Colitis/immunology , Colitis/genetics , Colitis/pathology , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/drug effects , Female , Male , Gene Expression Profiling , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Aged , Transcriptome , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/genetics , CTLA-4 Antigen/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Colon/pathology , Colon/immunology , Colon/drug effects , Epithelial Cells/immunology , Epithelial Cells/drug effects , Epithelial Cells/pathology
4.
bioRxiv ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38559183

ABSTRACT

Circulating Tumor Cells (CTCs), interrogated by sampling blood from patients with cancer, contain multiple analytes, including intact RNA, high molecular weight DNA, proteins, and metabolic markers. However, the clinical utility of tumor cell-based liquid biopsy has been limited since CTCs are very rare, and current technologies cannot process the blood volumes required to isolate a sufficient number of tumor cells for in-depth assays. We previously described a high-throughput microfluidic prototype utilizing high-flow channels and amplification of cell sorting forces through magnetic lenses. Here, we apply this technology to analyze patient-derived leukapheresis products, interrogating a mean blood volume of 5.83 liters from patients with metastatic cancer, with a median of 2,799 CTCs purified per patient. Isolation of many CTCs from individual patients enables characterization of their morphological and molecular heterogeneity, including cell and nuclear size and RNA expression. It also allows robust detection of gene copy number variation, a definitive cancer marker with potential diagnostic applications. High-volume microfluidic enrichment of CTCs constitutes a new dimension in liquid biopsies.

5.
J Clin Oncol ; 41(12): 2191-2200, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36634294

ABSTRACT

PURPOSE: Low-dose computed tomography (LDCT) for lung cancer screening is effective, although most eligible people are not being screened. Tools that provide personalized future cancer risk assessment could focus approaches toward those most likely to benefit. We hypothesized that a deep learning model assessing the entire volumetric LDCT data could be built to predict individual risk without requiring additional demographic or clinical data. METHODS: We developed a model called Sybil using LDCTs from the National Lung Screening Trial (NLST). Sybil requires only one LDCT and does not require clinical data or radiologist annotations; it can run in real time in the background on a radiology reading station. Sybil was validated on three independent data sets: a heldout set of 6,282 LDCTs from NLST participants, 8,821 LDCTs from Massachusetts General Hospital (MGH), and 12,280 LDCTs from Chang Gung Memorial Hospital (CGMH, which included people with a range of smoking history including nonsmokers). RESULTS: Sybil achieved area under the receiver-operator curves for lung cancer prediction at 1 year of 0.92 (95% CI, 0.88 to 0.95) on NLST, 0.86 (95% CI, 0.82 to 0.90) on MGH, and 0.94 (95% CI, 0.91 to 1.00) on CGMH external validation sets. Concordance indices over 6 years were 0.75 (95% CI, 0.72 to 0.78), 0.81 (95% CI, 0.77 to 0.85), and 0.80 (95% CI, 0.75 to 0.86) for NLST, MGH, and CGMH, respectively. CONCLUSION: Sybil can accurately predict an individual's future lung cancer risk from a single LDCT scan to further enable personalized screening. Future study is required to understand Sybil's clinical applications. Our model and annotations are publicly available.[Media: see text].


Subject(s)
Deep Learning , Lung Neoplasms , Humans , Lung Neoplasms/diagnostic imaging , Early Detection of Cancer/methods , Tomography, X-Ray Computed , Lung , Mass Screening/methods
6.
bioRxiv ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37790460

ABSTRACT

Immune checkpoint inhibitors (ICIs) are widely used anti-cancer therapies that can cause morbid and potentially fatal immune-related adverse events (irAEs). ICI-related myocarditis (irMyocarditis) is uncommon but has the highest mortality of any irAE. The pathogenesis of irMyocarditis and its relationship to anti-tumor immunity remain poorly understood. We sought to define immune responses in heart, tumor, and blood during irMyocarditis and identify biomarkers of clinical severity by leveraging single-cell (sc)RNA-seq coupled with T cell receptor (TCR) sequencing, microscopy, and proteomics analysis of 28 irMyocarditis patients and 23 controls. Our analysis of 284,360 cells from heart and blood specimens identified cytotoxic T cells, inflammatory macrophages, conventional dendritic cells (cDCs), and fibroblasts enriched in irMyocarditis heart tissue. Additionally, potentially targetable, pro-inflammatory transcriptional programs were upregulated across multiple cell types. TCR clones enriched in heart and paired tumor tissue were largely non-overlapping, suggesting distinct T cell responses within these tissues. We also identify the presence of cardiac-expanded TCRs in a circulating, cycling CD8 T cell population as a novel peripheral biomarker of fatality. Collectively, these findings highlight critical biology driving irMyocarditis and putative biomarkers for therapeutic intervention.

7.
J Biol Chem ; 286(22): 19932-42, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21467038

ABSTRACT

ric-8 (resistance to inhibitors of cholinesterase 8) genes have positive roles in variegated G protein signaling pathways, including Gα(q) and Gα(s) regulation of neurotransmission, Gα(i)-dependent mitotic spindle positioning during (asymmetric) cell division, and Gα(olf)-dependent odorant receptor signaling. Mammalian Ric-8 activities are partitioned between two genes, ric-8A and ric-8B. Ric-8A is a guanine nucleotide exchange factor (GEF) for Gα(i)/α(q)/α(12/13) subunits. Ric-8B potentiated G(s) signaling presumably as a Gα(s)-class GEF activator, but no demonstration has shown Ric-8B GEF activity. Here, two Ric-8B isoforms were purified and found to be Gα subunit GDP release factor/GEFs. In HeLa cells, full-length Ric-8B (Ric-8BFL) bound endogenously expressed Gα(s) and lesser amounts of Gα(q) and Gα(13). Ric-8BFL stimulated guanosine 5'-3-O-(thio)triphosphate (GTPγS) binding to these subunits and Gα(olf), whereas the Ric-8BΔ9 isoform stimulated Gα(s short) GTPγS binding only. Michaelis-Menten experiments showed that Ric-8BFL elevated the V(max) of Gα(s) steady state GTP hydrolysis and the apparent K(m) values of GTP binding to Gα(s) from ∼385 nm to an estimated value of ∼42 µM. Directionality of the Ric-8BFL-catalyzed Gα(s) exchange reaction was GTP-dependent. At sub-K(m) GTP, Ric-BFL was inhibitory to exchange despite being a rapid GDP release accelerator. Ric-8BFL binds nucleotide-free Gα(s) tightly, and near-K(m) GTP levels were required to dissociate the Ric-8B·Gα nucleotide-free intermediate to release free Ric-8B and Gα-GTP. Ric-8BFL-catalyzed nucleotide exchange probably proceeds in the forward direction to produce Gα-GTP in cells.


Subject(s)
GTP-Binding Protein alpha Subunits/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanosine Triphosphate/metabolism , Nuclear Proteins/metabolism , Animals , Catalysis , Cell Line , GTP-Binding Protein alpha Subunits/genetics , Guanine Nucleotide Exchange Factors/genetics , Guanosine Triphosphate/genetics , Mice , Nuclear Proteins/genetics , Protein Isoforms , Rats
8.
J Biol Chem ; 286(4): 2625-35, 2011 Jan 28.
Article in English | MEDLINE | ID: mdl-21115479

ABSTRACT

Ric-8A and Ric-8B are nonreceptor G protein guanine nucleotide exchange factors that collectively bind the four subfamilies of G protein α subunits. Co-expression of Gα subunits with Ric-8A or Ric-8B in HEK293 cells or insect cells greatly promoted Gα protein expression. We exploited these characteristics of Ric-8 proteins to develop a simplified method for recombinant G protein α subunit purification that was applicable to all Gα subunit classes. The method allowed production of the olfactory adenylyl cyclase stimulatory protein Gα(olf) for the first time and unprecedented yield of Gα(q) and Gα(13). Gα subunits were co-expressed with GST-tagged Ric-8A or Ric-8B in insect cells. GST-Ric-8·Gα complexes were isolated from whole cell detergent lysates with glutathione-Sepharose. Gα subunits were dissociated from GST-Ric-8 with GDP-AlF(4)(-) (GTP mimicry) and found to be >80% pure, bind guanosine 5'-[γ-thio]triphosphate (GTPγS), and stimulate appropriate G protein effector enzymes. A primary characterization of Gα(olf) showed that it binds GTPγS at a rate marginally slower than Gα(s short) and directly activates adenylyl cyclase isoforms 3, 5, and 6 with less efficacy than Gα(s short).


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/isolation & purification , GTP-Binding Protein alpha Subunits/isolation & purification , Glutathione Transferase/isolation & purification , Recombinant Fusion Proteins/isolation & purification , Adenylyl Cyclases/chemistry , Adenylyl Cyclases/metabolism , Animals , Baculoviridae/genetics , Enzyme Activation , GTP-Binding Protein alpha Subunits/biosynthesis , GTP-Binding Protein alpha Subunits/chemistry , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits, Gs/biosynthesis , GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/genetics , Gene Expression , Glutathione Transferase/biosynthesis , Glutathione Transferase/chemistry , Glutathione Transferase/genetics , HEK293 Cells , Humans , Isoenzymes/chemistry , Isoenzymes/metabolism , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Spodoptera
10.
ACS Chem Biol ; 13(5): 1130-1136, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29608264

ABSTRACT

Lipid-derived electrophiles (LDEs) are reactive metabolites, which can covalently modify proteins and DNA and regulate diverse cellular processes. 2- trans-Hexadecenal (2-HD) is a byproduct of sphingolipid metabolism, involved in cytoskeletal reorganization, DNA damage, and apoptosis. In addition, the loss of ALDH3A2, an enzyme removing 2-HD in cells, is responsible for Sjörgen-Larsson Syndrome (SJS), suggesting that accumulation of 2-HD could lead to pathogenesis. However, the targets and the precise mechanisms of 2-HD are not well characterized. Herein, we report an alkyne-2-HD derivative as a bioorthogonal probe to explore the functions of 2-HD. We identified more than 500 potential cellular targets. Among them, the pro-apoptotic protein Bax can be covalently modified by 2-HD directly at the conserved Cys62 residue. Our work provided new chemical tools to explore the cellular functions of LDEs and revealed new mechanistic insights of the deregulation of lipid metabolism in diseases.


Subject(s)
Aldehydes/metabolism , Lipid Metabolism , Molecular Probes/chemistry , Aldehyde Oxidoreductases/metabolism , Aldehydes/chemistry , Binding Sites , Click Chemistry , HCT116 Cells , Humans , bcl-2-Associated X Protein/metabolism
11.
Sci Signal ; 11(532)2018 05 29.
Article in English | MEDLINE | ID: mdl-29844055

ABSTRACT

Resistance to inhibitors of cholinesterase-8A (Ric-8A) and Ric-8B are essential biosynthetic chaperones for heterotrimeric G protein α subunits. We provide evidence for the direct regulation of Ric-8A cellular activity by dual phosphorylation. Using proteomics, Western blotting, and mutational analyses, we determined that Ric-8A was constitutively phosphorylated at five serines and threonines by the protein kinase CK2. Phosphorylation of Ser435 and Thr440 in rat Ric-8A (corresponding to Ser436 and Thr441 in human Ric-8A) was required for high-affinity binding to Gα subunits, efficient stimulation of Gα subunit guanine nucleotide exchange, and mediation of Gα subunit folding. The CK2 consensus sites that contain Ser435 and Thr440 are conserved in Ric-8 homologs from worms to mammals. We found that the homologous residues in mouse Ric-8B, Ser468 and Ser473, were also phosphorylated. Mutation of the genomic copy of ric-8 in Caenorhabditis elegans to encode alanine in the homologous sites resulted in characteristic ric-8 reduction-of-function phenotypes that are associated with defective Gq and Gs signaling, including reduced locomotion and defective egg laying. The C. elegans ric-8 phosphorylation site mutant phenotypes were partially rescued by chemical stimulation of Gq signaling. These results indicate that dual phosphorylation represents a critical form of conserved Ric-8 regulation and demonstrate that Ric-8 proteins are needed for effective Gα signaling. The position of the CK2-phosphorylated sites within a structural model of Ric-8A reveals that these sites contribute to a key acidic and negatively charged surface that may be important for its interactions with Gα subunits.


Subject(s)
GTP-Binding Protein alpha Subunits/chemistry , Guanine Nucleotide Exchange Factors/metabolism , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Guanosine Diphosphate/metabolism , Protein Folding , Amino Acid Sequence , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits/metabolism , Guanine Nucleotide Exchange Factors/genetics , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphorylation , Protein Conformation , Rats , Serine/chemistry , Serine/genetics , Serine/metabolism , Signal Transduction , Threonine/chemistry , Threonine/genetics , Threonine/metabolism
12.
J Immunol Methods ; 281(1-2): 109-18, 2003 Oct 01.
Article in English | MEDLINE | ID: mdl-14580885

ABSTRACT

Rapid quantitative immuno-detection of haptens by the lateral flow assay without "typical" competitive inhibition results is studied. In the present study, we describe an immuno-threshold-based assay for the quantification of cortisol. It gives a signal which is directly proportional to the cortisol concentration in plasma samples with a performance time of only 5 min. This technique provides a practical calibration curve with detection limit of 3.5 ng/ml. The precision of the assay is 6% (intra-assay coefficient of variation, CV) and 10% (inter-assay CV). Cross-reactivity with related steroids is acceptably low: corticosterone (3.38%), cortisone (2.08%), deoxycorticosterone (2.00%), 17alpha-hydroxyprogesterone (0.39%), and progesterone (0.05%). Furthermore, the test strips show the advantages of long storage time and high stability that allow mass production and preparation of large batches. A one-step cortisol whole blood test derived from this plasma lateral flow assay has then been performed. It is a rapid chromatographic immunoassay designed for quantitative determination of cortisol in whole blood samples. It requires no sample pretreatment and gives result within 15 min. In principle, with this rapid and sensitive immunoassay, the immuno-test strips can be employed for detecting all low-molecular-weight haptens. It may also be a useful and convenient dipstick format for drug detection.


Subject(s)
Hydrocortisone/analysis , Reagent Strips , Calibration , Enzyme-Linked Immunosorbent Assay , Humans , Hydrocortisone/blood , Immunoassay , Saliva/chemistry , Sensitivity and Specificity
13.
J Agric Food Chem ; 62(16): 3548-52, 2014 Apr 23.
Article in English | MEDLINE | ID: mdl-24716724

ABSTRACT

Several (+)- and (-)-α-pinene derivatives were synthesized and evaluated for their antimicrobial activity toward Gram-positive bacteria Micrococcus luteus and Staphylococcus aureus, Gram-negative bacterium Escherichia coli, and the unicellular fungus Candida albicans using bioautographic assays. (+)-α-Pinene 1a showed modest activity against the test organisms, whereas (-)-α-pinene 1b showed no activity at the tested concentration. Of all the α-pinene derivatives evaluated, the ß-lactam derivatives (10a and 10b) were the most antimicrobial. The increase in the antimicrobial activity of 10a compared to 1a ranged from nearly 3.5-fold (C. albicans) to 43-fold (S. aureus). The mean ± standard deviation for the zone of inhibition (mm) for 10a (C. albicans) was 31.9 ± 4.3 and that for S. aureus was 51.1 ± 2.9. Although (-)-α-pinene 1b was not active toward the test microorganisms, the corresponding ß-lactam 10b, amino ester 13b, and amino alcohol 14b showed antimicrobial activity toward the test microorganisms. The increase in the antimicrobial activity of 10b compared to 1b ranged from 32-fold (S. aureus) to 73-fold (M. luteus). The mean ± standard deviation for the zone of inhibition (mm) for 10b (S. aureus) was 32.0 ± 0.60 and that for M. luteus was 73.2 ± 0.30.


Subject(s)
Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Monoterpenes/chemical synthesis , Monoterpenes/pharmacology , Anti-Infective Agents/chemistry , Bacteria/drug effects , Bicyclic Monoterpenes , Candida albicans/drug effects , Microbial Sensitivity Tests , Molecular Structure , Monoterpenes/chemistry , Structure-Activity Relationship
14.
Cell Rep ; 9(2): 495-503, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25373897

ABSTRACT

Hippo signaling is a tumor-suppressor pathway involved in organ size control and tumorigenesis through the inhibition of YAP and TAZ. Here, we show that energy stress induces YAP cytoplasmic retention and S127 phosphorylation and inhibits YAP transcriptional activity and YAP-dependent transformation. These effects require the central metabolic sensor AMP-activated protein kinase (AMPK) and the upstream Hippo pathway components Lats1/Lats2 and angiomotin-like 1 (AMOTL1). Furthermore, we show that AMPK directly phosphorylates S793 of AMOTL1. AMPK activation stabilizes and increases AMOTL1 steady-state protein levels, contributing to YAP inhibition. The phosphorylation-deficient S793Ala mutant of AMOTL1 showed a shorter half-life and conferred resistance to energy-stress-induced YAP inhibition. Our findings link energy sensing to the Hippo-YAP pathway and suggest that YAP may integrate spatial (contact inhibition), mechanical, and metabolic signals to control cellular proliferation and survival.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adenylate Kinase/metabolism , Membrane Proteins/metabolism , Phosphoproteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Stress, Physiological , Amino Acid Sequence , Angiomotins , Energy Metabolism , HEK293 Cells , Hippo Signaling Pathway , Humans , Membrane Proteins/genetics , Molecular Sequence Data , Mutation, Missense , Phosphorylation , Protein Stability , Transcription Factors , Tumor Suppressor Proteins/metabolism , YAP-Signaling Proteins
15.
Sci Signal ; 4(200): ra79, 2011 Nov 22.
Article in English | MEDLINE | ID: mdl-22114146

ABSTRACT

Ric-8A (resistance to inhibitors of cholinesterase 8A) and Ric-8B are guanine nucleotide exchange factors that enhance different heterotrimeric guanine nucleotide-binding protein (G protein) signaling pathways by unknown mechanisms. Because transgenic disruption of Ric-8A or Ric-8B in mice caused early embryonic lethality, we derived viable Ric-8A- or Ric-8B-deleted embryonic stem (ES) cell lines from blastocysts of these mice. We observed pleiotropic G protein signaling defects in Ric-8A(-/-) ES cells, which resulted from reduced steady-state amounts of Gα(i), Gα(q), and Gα(13) proteins to <5% of those of wild-type cells. The amounts of Gα(s) and total Gß protein were partially reduced in Ric-8A(-/-) cells compared to those in wild-type cells, and only the amount of Gα(s) was reduced substantially in Ric-8B(-/-) cells. The abundances of mRNAs encoding the G protein α subunits were largely unchanged by loss of Ric-8A or Ric-8B. The plasma membrane residence of G proteins persisted in the absence of Ric-8 but was markedly reduced compared to that in wild-type cells. Endogenous Gα(i) and Gα(q) were efficiently translated in Ric-8A(-/-) cells but integrated into endomembranes poorly; however, the reduced amounts of G protein α subunits that reached the membrane still bound to nascent Gßγ. Finally, Gα(i), Gα(q), and Gß(1) proteins exhibited accelerated rates of degradation in Ric-8A(-/-) cells compared to those in wild-type cells. Together, these data suggest that Ric-8 proteins are molecular chaperones required for the initial association of nascent Gα subunits with cellular membranes.


Subject(s)
Cell Membrane/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , GTP-Binding Protein alpha Subunits/biosynthesis , Guanine Nucleotide Exchange Factors/metabolism , Molecular Chaperones/metabolism , Animals , Cell Membrane/genetics , GTP-Binding Protein alpha Subunits, Gs/genetics , Guanine Nucleotide Exchange Factors/genetics , HeLa Cells , Humans , Mice , Mice, Mutant Strains , Molecular Chaperones/genetics
SELECTION OF CITATIONS
SEARCH DETAIL