Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
bioRxiv ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38559095

ABSTRACT

Pulmonary fibrosis is a devastating disease with no effective treatments to cure, stop or reverse the unremitting, fatal fibrosis. A critical barrier to treating this disease is the lack of understanding of the pathways leading to fibrosis as well as those regulating the resolution of fibrosis. Fibrosis is the pathologic side of normal tissue repair that results when the normal wound healing programs go awry. Successful resolution of tissue injury requires several highly coordinated pathways, and this research focuses on the interplay between these overlapping pathways: immune effectors, inflammatory mediators and fibroproliferation in the resolution of fibrosis. Previously we have successfully prevented, mitigated, and even reversed established fibrosis using vaccinia vaccination immunotherapy in two models of murine lung fibrosis. The mechanism by which vaccinia reverses fibrosis is by vaccine induced lung specific Th1 skewed tissue resident memory (TRMs) in the lung. In this study, we isolated a population of vaccine induced TRMs - CD49a+ CD4+ T cells - that are both necessary and sufficient to reverse established pulmonary fibrosis. Using adoptive cellular therapy, we demonstrate that intratracheal administration of CD49a+ CD4+ TRMs into established fibrosis, reverses the fibrosis histologically, by promoting a decrease in collagen, and functionally, by improving lung function, without the need for vaccination. Furthermore, co-culture of in vitro derived CD49+ CD4+ human TRMs with human fibroblasts from individuals with idiopathic pulmonary fibrosis (IPF) results in the down regulation of IPF fibroblast collagen production. Lastly, we demonstrate in human IPF lung histologic samples that CD49a+ CD4+ TRMs, which can down regulate human IPF fibroblast function, fail to increase in the IPF lungs, thus potentially failing to promote resolution. Thus, we define a novel unappreciated role for tissue resident memory T cells in regulating established lung fibrosis to promote resolution of fibrosis and re-establish lung homeostasis. We demonstrate that immunotherapy, in the form of adoptive transfer of CD49a+ CD4+ TRMs into the lungs of mice with established fibrosis, not only stops progression of the fibrosis but more importantly reverses the fibrosis. These studies provide the insight and preclinical rationale for a novel paradigm shifting approach of using cellular immunotherapy to treat lung fibrosis.

2.
Laryngoscope ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738796

ABSTRACT

OBJECTIVES: Animal models for laryngotracheal stenosis (LTS) are critical to understand underlying mechanisms and study new therapies. Current animal models for LTS are limited by small airway sizes compared to human. The objective of this study was to develop and validate a novel, large animal ovine model for LTS. METHODS: Sheep underwent either bleomycin-coated polypropylene brush injury to the subglottis (n = 6) or airway stent placement (n = 2) via suspension microlaryngoscopy. Laryngotracheal complexes were harvested 4 weeks following injury or stent placement. For the airway injury group, biopsies (n = 3 at each site) were collected of tracheal scar and distal normal regions, and analyzed for fibrotic gene expression. Lamina propria (LP) thickness was compared between injured and normal areas of trachea. RESULTS: No mortality occurred in sheep undergoing airway injury or stent placement. There was no migration of tracheal stents. After protocol optimization, LP thickness was significantly increased in injured trachea (Sheep #3: 529.0 vs. 850.8 um; Sheep #4: 933.0 vs. 1693.2 um; Sheep #5: 743.7 vs. 1378.4 um; Sheep #6: 305.7 vs. 2257.6 um). A significant 62-fold, 20-fold, 16-fold, 16-fold, and 9-fold change of COL1, COL3, COL5, FN1, and TGFB1 was observed in injured scar specimen relative to unaffected airway, respectively. CONCLUSION: An ovine LTS model produces histologic and transcriptional changes consistent with fibrosis seen in human LTS. Airway stent placement in this model is safe and feasible. This large airway model is a reliable and reproducible method to assess the efficacy of novel LTS therapies prior to clinical translation. LEVEL OF EVIDENCE: N/A Laryngoscope, 2024.

3.
Article in English | MEDLINE | ID: mdl-38606634

ABSTRACT

OBJECTIVE: To present a comprehensive flow cytometry panel for idiopathic subglottic stenosis (iSGS). STUDY DESIGN: Controlled ex vivo cohort study. SETTING: Tertiary care academic hospital in a metropolitan area. METHODS: Flow cytometry and single-cell RNA sequencing were performed on 9 paired normal and scar tissue samples from iSGS patients. Flow cytometry was used to assess the presence of myeloid (CD11b, CD14, CD15, Siglec8), lymphoid (CD3, CD4, CD8, gamma delta [γδ], FOXP3), endothelial (CD31), fibroblast (CD90, SMA), and epithelial (CD326, CK5) markers. RESULTS: On flow cytometry, iSGS scar is characterized by an increased presence of myeloid, lymphoid, endothelial, and fibroblast cell types, but a decreased presence of epithelial cells. In the myeloid lineage, iSGS scar samples demonstrated increased CD11b+ monocytes (P < .001), Siglec8+ eosinophils (P = .03), and CD14+ monocytes (P = .02). In the lymphoid lineage, iSGS scar demonstrated increased CD3+ T-cells (P < .001), CD4+ helper T-cells (P < .001), γδ+ T-cells (P < .001), and FOXP3+ regulatory T-cells (P = .002). iSGS scar exhibited specific increases in CD90+ (P = .04) and SMA+ (P < .001) fibroblasts but decreased CD326+ (E-cadherin) epithelial cells (P = .01) relative to normal samples. CONCLUSION: We present a comprehensive flow cytometry panel for iSGS. This flow panel may serve as a common platform among airway scientists to elucidate the cellular mechanisms underpinning iSGS and other upper airway pathologies. Scar iSGS samples demonstrate a distinct cellular profile relative to normal iSGS specimens, exhibiting increased fibroblast, endothelial, and inflammatory cell types but decreased epithelium.

SELECTION OF CITATIONS
SEARCH DETAIL