Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(12): e2319799121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38478690

ABSTRACT

TMC-anti and TMC-syn, the two topological isomers of [FeIV(O)(TMC)(CH3CN)]2+ (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane, or Me4cyclam), differ in the orientations of their FeIV=O units relative to the four methyl groups of the TMC ligand framework. The FeIV=O unit of TMC-anti points away from the four methyl groups, while that of TMC-syn is surrounded by the methyl groups, resulting in differences in their oxidative reactivities. TMC-syn reacts with HAT (hydrogen atom transfer) substrates at 1.3- to 3-fold faster rates than TMC-anti, but the reactivity difference increases dramatically in oxygen-atom transfer reactions. R2S substrates are oxidized into R2S=O products at rates 2-to-3 orders of magnitude faster by TMC-syn than TMC-anti. Even more remarkably, TMC-syn epoxidizes all the olefin substrates in this study, while TMC-anti reacts only with cis-cyclooctene but at a 100-fold slower rate. Comprehensive quantum chemical calculations have uncovered the key factors governing such reactivity differences found between these two topological isomers.

2.
Angew Chem Int Ed Engl ; 63(3): e202316378, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37997195

ABSTRACT

Lewis acid-bound high valent Mn-oxo species are of great importance due to their relevance to photosystem II. Here, we report the synthesis of a unique [(BnTPEN)Mn(III)-O-Ce(IV)(NO3 )4 ]+ adduct (2) by the reaction of (BnTPEN)Mn(II) (1) with 4 eq. ceric ammonium nitrate. 2 has been characterized using UV/Vis, NMR, resonance Raman spectroscopy, as well as by mass spectrometry. Treatment of 2 with Sc(III)(OTf)3 results in the formation of (BnTPEN)Mn(IV)-O-Sc(III) (3), while HClO4 addition to 2 forms (BnTPEN)Mn(IV)-OH (4), reverting to 2 upon Ce(III)(NO3 )3 addition. 2 can also be prepared by the oxidation of 1 eq. Ce(III)(NO3 )3 with [(BnTPEN)Mn(IV)=O]2+ (5). In addition, the EPR spectroscopy revealed the elegant temperature-dependent equilibria between 2 and Mn(IV) species. The binding of redox-active Ce(IV) boosts electron transfer efficiency of 2 towards ferrocenes. Remarkably, the newly characterized Mn(III)-O-Ce(IV) species can carry out O-atom and H-atom transfer reactions.

3.
J Am Chem Soc ; 145(34): 18855-18864, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37587434

ABSTRACT

Water has been recognized as an excellent solvent for maneuvering both the catalytic activity and selectivity, especially in the case of heterogeneous catalysis. However, maintaining the active catalytic species in their higher oxidation states (IV/V) while retaining the catalytic activity and recyclability in water is an enormous challenge. Herein, we have developed a solution to this problem using covalent organic frameworks (COFs) to immobilize the (Et4N)2[FeIII(Cl)bTAML] molecules, taking advantage of the COF's morphology and surface charge. By using the visible light and [CoIII(NH3)5Cl]Cl2 as a sacrificial electron acceptor within the COF, we have successfully generated and stabilized the [(bTAML)FeIV-O-FeIV(bTAML)]- species in water. The COF backbone simultaneously acts as a porous host and a photosensitizer. This is the first time that the photochemically generated Fe2IV-µ-oxo radical cation species has demonstrated high catalytic activity with moderate to high yield for the selective oxidation of the unactivated C-H bonds, even in water. To enhance the catalytic activity and achieve good recyclability, we have developed a TpDPP COF film by transforming the TpDPP COF nanospheres. We have achieved the regio- and stereoselective functionalization of unactivated C-H bonds of alkanes and alkenes (3°:2° = 102:1 for adamantane with the COF film), which is improbable in homogeneous conditions. The film exhibits C-H bond oxidation with higher catalytic yield (32-98%) and a higher degree of selectivity (cis/trans = 74:1; 3°:2° = 100:1 for cis-decalin).

4.
Faraday Discuss ; 234(0): 42-57, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35174376

ABSTRACT

An efficient electrochemical method for the selective oxidation of alcohols to their corresponding aldehydes/ketones using a biomimetic iron complex, [(bTAML)FeIII-OH2]-, as the redox mediator in an undivided electrochemical cell with inexpensive carbon and nickel electrodes using water as an oxygen source is reported. The substrate scope also includes alcohols that contain O and N heteroatoms in the scaffold, which are well tolerated under these reaction conditions. Mechanistic studies show the involvement of a high-valent FeV(O) species, [(bTAML)FeV(O)]-, formed via PCET (overall 2H+/2e-) from [(bTAML)FeIII-OH2]- at 0.77 V (vs. Fc+/Fc). Moreover, electrokinetic studies of the oxidation of C-H bonds indicate a second-order reaction, with the C-H abstraction by FeV(O) being the rate-determining step. The overall mechanism, studied using linear free energy relationships and radical clocks, indicates a "net hydride" transfer, leading to the oxidation of the alcohol to the corresponding aldehyde or ketone. When the reaction was carried out at pH > 11, the reaction could be carried out at a ∼500 mV lower potential than that at pH 8, albeit with reduced reaction rates. The reactive intermediate involved at pH > 11 is the corresponding one-electron oxidized [(bTAML)FeIV(O)]2- species.


Subject(s)
Iron , Oxygen , Alcohols , Electrons , Iron/chemistry , Oxidation-Reduction , Oxygen/chemistry
5.
J Am Chem Soc ; 143(22): 8426-8436, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34029465

ABSTRACT

Heterogeneous catalysis in water has not been explored beyond certain advantages such as recyclability and recovery of the catalysts from the reaction medium. Moreover, poor yield, extremely low selectivity, and active catalytic site deactivation further underrate the heterogeneous catalysis in water. Considering these facts, we have designed and synthesized solution-dispersible porous covalent organic framework (COF) nanospheres. We have used their distinctive morphology and dispersibility to functionalize unactivated C-H bonds of alkanes heterogeneously with high catalytic yield (42-99%) and enhanced regio- and stereoselectivity (3°:2° = 105:1 for adamantane). Further, the fabrication of catalyst-immobilized COF nanofilms via covalent self-assembly of catalytic COF nanospheres for the first time has become the key toward converting the catalytically inactive homogeneous catalysts into active and effective heterogeneous catalysts operating in water. This unique covalent self-assembly occurs through the protrusion of the fibers at the interface of two nanospheres, transmuting the catalytic spheres into films without any leaching of catalyst molecules. The catalyst-immobilized porous COF nanofilms' chemical functionality and hydrophobic environment stabilize the high-valent transient active oxoiron(V) intermediate in water and restricts the active catalytic site's deactivation. These COF nanofilms functionalize the unactivated C-H bonds in water with a high catalytic yield (45-99%) and with a high degree of selectivity (cis:trans = 155:1; 3°:2° = 257:1, for cis-1,2-dimethylcyclohexane). To establish this approach's "practical implementation", we conducted the catalysis inflow (TON = 424 ± 5) using catalyst-immobilized COF nanofilms fabricated on a macroporous polymeric support.

6.
Chem Commun (Camb) ; 60(51): 6520-6523, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38836330

ABSTRACT

Adding HClO4 to [(BnTPEN)MnIII-OO]+ in MeOH generates a short-lived MnIII-OOH species, which converts to a putative MnVO species. The potent MnVO species in MeCN oxidizes the pendant phenyl ring of the ligand in an intramolecular fashion. The addition of benzene causes the formation of (BnTPEN)MnIII-phenolate. These findings suggest that high valent Mn species have the potential to catalyze challenging aromatic hydroxylation reactions.

7.
Chem Commun (Camb) ; 56(60): 8484-8487, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32588843

ABSTRACT

Selective catalytic oxygenation of unactivated C-H bonds for a series of substrates by dioxygen using iron complexes was performed without the use of a co-reductant. Mechanistic studies indicate that the reaction proceeded via the autocatalytic formation of an oxoiron(v) intermediate, which brings high regioselectivity and stereoretention.

8.
Chem Sci ; 11(43): 11877-11885, 2020 Sep 24.
Article in English | MEDLINE | ID: mdl-34094416

ABSTRACT

An efficient electrochemical method for the selective oxidation of C-H bonds of unactivated alkanes (BDE ≤97 kcal mol-1) and C[double bond, length as m-dash]C bonds of alkenes using a biomimetic iron complex, [(bTAML)FeIII-OH2]-, as the redox mediator in an undivided electrochemical cell with inexpensive carbon and nickel electrodes is reported. The O-atom of water remains the source of O-incorporation in the product formed after oxidation. The products formed upon oxidation of C-H bonds display very high regioselectivity (75 : 1, 3° : 2° for adamantane) and stereo-retention (RC ∼99% for cyclohexane derivatives). The substrate scope includes natural products such as cedryl acetate and ambroxide. For alkenes, epoxides were obtained as the sole product. Mechanistic studies show the involvement of a high-valent oxoiron(v) species, [(bTAML)FeV(O)]- formed via PCET (overall 2H+/2e-) from [(bTAML)FeIII-OH2]- in CPE at 0.80 V (vs. Ag/AgNO3). Moreover, electrokinetic studies for the oxidation of C-H bonds indicate a second-order reaction with the C-H abstraction by oxoiron(v) being the rate-determining step.

9.
Chem Sci ; 8(11): 7545-7551, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29163909

ABSTRACT

The iron complex [(bTAML)FeIII-OH2]- (1) selectively catalyses the photocatalytic hydroxylation and epoxidation reactions of alkanes and alkenes, respectively, using water as the oxygen-atom source. Upon the oxidation of unactivated alkanes, which included several substrates including natural products, hydroxylation was observed mostly at the 3° C-H bonds with 3° : 2° selectivity up to ∼100 : 1. When alkenes were used as the substrates, epoxides were predominantly formed with high yields. In the presence of H218O, more than 90% of the 18O-labelled oxygen atoms were incorporated into the hydroxylated and epoxide product indicating that water was the primary oxygen source. Mechanistic studies indicate the formation of an active [{(bTAML)FeIV}2-µ-oxo]2- (2) dimer from the starting complex 1via PCET. The subsequent disproportionation of 2 upon addition of substrate, leading to the formation of FeV(O), renders the high selectivity observed in these reactions.

SELECTION OF CITATIONS
SEARCH DETAIL