Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Crit Rev Food Sci Nutr ; 63(23): 6069-6113, 2023.
Article in English | MEDLINE | ID: mdl-35057682

ABSTRACT

There is a growing need for healthier foods with no trans and reduced saturated fat. However, solid fats play critical roles in texture and sensory attributes of food products, making it challenging to eliminate them in foods. Recently, the concept of oleogelation as a novel oil structuring technique has received numerous attentions owing to their great potential to mimic the properties of solid fats. Understanding textural, rheological and sensory properties of oleogels helps predict the techno-functionalities of oleogels to replace solid fats in food products. This research critically reviews the textural and rheological properties of oleogels prepared by low molecular weight oleogelators (LMWGs) and functional characteristics of foods formulated by these oleogels. The mechanical properties of LMWG-containing oleogels are comprehensively discussed against conventional solid fats. The interactions between the oleogel and its surrounding food matrix are explained, and the sensory attributes of oleogel containing reformulated products are highlighted. Scientific insights into the texture and rheological properties of oleogels manufactured with a wide range of low molecular gelators and their related products are provided in order to boost their implication for creating healthier foods with high consumer acceptability. Future research opportunities on low molecular weight gelators are also discussed.


Subject(s)
Fatty Acids , Organic Chemicals , Molecular Weight , Rheology
2.
J Dairy Res ; 90(2): 182-185, 2023 May.
Article in English | MEDLINE | ID: mdl-37294040

ABSTRACT

We investigated sonication as a pre-processing step to reduce acid whey generation during Greek yoghurt manufacture. The generation of a large amount of acid whey during the production of Greek yoghurt is an ongoing problem in the dairy industry and many studies are currently focusing on reducing it. We focused on the use of ultrasonication as a novel approach to minimize the casein fraction in the acid whey stream and simultaneously improve the gel properties. Ultrasound applied before the fermentation modified the structural properties and bonding behaviours of milk proteins, and enhanced the retention of casein in the yoghurt gel after the fermentation and straining steps. Therefore, the use of low-frequency ultrasonication as a pre-processing step may have the potential to provide significant economic benefits to the Greek yoghurt manufacturing process. Moreover, it improved the nutritional and physicochemical properties compared to regular Greek yoghurts.


Subject(s)
Caseins , Whey , Animals , Caseins/chemistry , Sonication/veterinary , Yogurt , Greece , Whey Proteins/chemistry
3.
Molecules ; 27(5)2022 Mar 06.
Article in English | MEDLINE | ID: mdl-35268820

ABSTRACT

The traditional Cannabis plant as a medicinal crop has been explored for many thousands of years. The Cannabis industry is rapidly growing; therefore, optimising drying methods and producing high-quality medical products have been a hot topic in recent years. We systemically analysed the current literature and drew a critical summary of the drying methods implemented thus far to preserve the quality of bioactive compounds from medicinal Cannabis. Different drying techniques have been one of the focal points during the post-harvesting operations, as drying preserves these Cannabis products with increased shelf life. We followed or even highlighted the most popular methods used. Drying methods have advanced from traditional hot air and oven drying methods to microwave-assisted hot air drying or freeze-drying. In this review, traditional and modern drying technologies are reviewed. Each technology will have different pros and cons of its own. Moreover, this review outlines the quality of the Cannabis plant component harvested plays a major role in drying efficiency and preserving the chemical constituents. The emergence of medical Cannabis, and cannabinoid research requires optimal post-harvesting processes for different Cannabis strains. We proposed the most suitable method for drying medicinal Cannabis to produce consistent, reliable and potent medicinal Cannabis. In addition, drying temperature, rate of drying, mode and storage conditions after drying influenced the Cannabis component retention and quality.


Subject(s)
Cannabinoids , Cannabis , Medical Marijuana , Desiccation/methods , Freeze Drying , Medical Marijuana/therapeutic use
4.
J Dairy Res ; 87(4): 501-512, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33353571

ABSTRACT

The effects of low and high frequency ultrasound on the production of volatile compounds along with their derivation and corresponding off-flavours in milk and milk products are discussed in this review. The review will simultaneously discuss possible mechanisms of applied ultrasound and their respective chemical and physical effects on milk components in relation to the production of volatile compounds. Ultrasound offers potential benefits in dairy applications over conventional heat treatment processes. Physical effects enhance the positive alteration of the physicochemical properties of milk proteins and fat. However, chemical effects propagated by free radical generation cause redox oxidations which in turn produce undesirable volatile compounds such as aldehydes, ketones, acids, esters, alcohols and sulphur, producing off-flavours. The extent of volatile compounds produced depends on ultrasonic processing conditions such as sonication time, temperature and frequency. Low frequency ultrasound limits free radical formation and results in few volatile compounds, while high ultrasonic frequency induces greater level of free radical formation. Furthermore, the compositional variations in terms of milk proteins and fat within the milk systems influence the production of volatile compounds. These factors could be controlled and optimized to reduce the production of undesirable volatiles, eliminate off-flavours, and promote the application of ultrasound technology in the dairy field.


Subject(s)
Dairy Products/analysis , Food Handling/methods , Milk/chemistry , Ultrasonics , Volatile Organic Compounds/chemistry , Animals , Cattle
5.
J Dairy Sci ; 101(10): 8726-8736, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30100513

ABSTRACT

In vitro immunogenicity of various native and thermally processed (72°C/15 s and 100°C/30 s) bovine milk protein fractions, their mixtures, whey, and skim milk, was studied by analyzing the immune response of T helper (Th) cells in human peripheral blood mononuclear cells. The secretion of Th type cytokines induced by the protein stimulants was quantified while determining the heat-induced protein denaturation. Purified whey proteins, caseins and whey fraction, and skim milk provoked substantial immune responses at various degrees, indicating their potent immunogenicity. The protein mixtures prepared using the fractionated whey proteins with or without caseins appeared less immunogenic in both native and heat-treated forms, implying their potential of producing less immunogenic dairy products. The 100°C/30 s treatment significantly altered the immunogenicity of most of the potent protein stimulants, which mostly coincided with their levels of protein denaturation. The 72°C/15 s treatment caused the least protein denaturation but altered the immunogenicity of several protein stimulants notably, including heat-stable caseins and α-lactalbumin.


Subject(s)
Food Handling , Hot Temperature , Milk Proteins/immunology , Milk/chemistry , Protein Denaturation , Animals , Caseins , Cattle , Food Handling/methods , Lactalbumin , Leukocytes, Mononuclear , Whey Proteins
6.
J Dairy Sci ; 100(1): 76-88, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27865510

ABSTRACT

Accelerated shelf-life testing is applied to a variety of products to estimate keeping quality over a short period of time. The industry has not been successful in applying this approach to ultra-high temperature (UHT) milk because of chemical and physical changes in the milk proteins that take place during processing and storage. We investigated these protein changes, applying accelerated shelf-life principles to UHT milk samples with different fat levels and using native- and sodium dodecyl sulfate-PAGE. Samples of UHT skim and whole milk were stored at 20, 30, 40, and 50°C for 28d. Irrespective of fat content, UHT treatment had a similar effect on the electrophoretic patterns of milk proteins. At the start of testing, proteins were bonded mainly through disulfide and noncovalent interactions. However, storage at and above 30°C enhanced protein aggregation via covalent interactions. The extent of aggregation appeared to be influenced by fat content; whole milk contained more fat than skim milk, implying aggregation via melted or oxidized fat, or both. Based on reduction in loss in absolute quantity of individual proteins, covalent crosslinking in whole milk was facilitated mainly by products of lipid oxidation and increased access to caseins for crosslinking reactions. Maillard and dehydroalanine products were the main contributors involved in protein changes in skim milk. Protein crosslinking appeared to follow a different pathway at higher temperatures (≥40°C) than at lower temperatures, making it very difficult to extrapolate these changes to protein interactions at lower temperatures.


Subject(s)
Food Handling , Milk Proteins/analysis , Milk/chemistry , Animals , Caseins/analysis , Electrophoresis, Polyacrylamide Gel , Hot Temperature
7.
J Dairy Res ; 84(4): 484-487, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28965495

ABSTRACT

Contradictory statements about the effects of pH change on crystallisation behaviour of lactose exist in the literature. Considering the importance of addressing the processability issue of acid whey, a systematic study is required to establish lactose crystallisation behaviour in the presence of LA and Ca at concentrations present in real acid whey waste streams emphasising impact of pH. Structural modifications of lactose were evident at elevated, more neutral pH in the presence of 1% w/w LA and 0·12% w/w Ca. These structural changes led to changes in the anomeric equilibrium of lactose, which manipulated the water-lactose behaviour and increased the crystallinity. Therefore, altering pH to 6·5 may be the solution to proper industrial processing of acid whey, enhancing the ability of lactose to crystallise properly.


Subject(s)
Calcium/chemistry , Lactic Acid/chemistry , Lactose/chemistry , Crystallization/methods , Dairy Products , Food Handling , Hydrogen-Ion Concentration , Industrial Waste/analysis , Water/chemistry , Whey/chemistry
8.
J Dairy Res ; 84(3): 346-354, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28637531

ABSTRACT

Greek yoghurt, a popular dairy product, generates large amounts of acid whey as a by-product during manufacturing. Post-processing treatment of this stream presents one of the main concerns for the industry. The objective of this study was to manipulate initial milk total solids content (15, 20 or 23 g/100 g) by addition of milk protein concentrate, thus reducing whey expulsion. Such an adjustment was investigated from the technological standpoint including starter culture performance, chemical and physical properties of manufactured Greek yoghurt and generated acid whey. A comparison was made to commercially available products. Increasing protein content in regular yoghurt reduced the amount of acid whey during whey draining. This protein fortification also enhanced the Lb. bulgaricus growth rate and proteolytic activity. Best structural properties including higher gel strength and lower syneresis were observed in the Greek yoghurt produced with 20 g/100 g initial milk total solid compared to manufactured or commercially available products, while acid whey generation was lowered due to lower drainage requirement.


Subject(s)
Food Handling/methods , Milk/chemistry , Whey/chemistry , Yogurt/analysis , Animals , Fermentation , Hydrogen-Ion Concentration , Lactobacillus delbrueckii/metabolism , Milk Proteins/analysis , Streptococcus thermophilus/metabolism , Yogurt/microbiology
9.
J Dairy Res ; 83(3): 268-80, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27600960

ABSTRACT

Food engineering within the dairy sector is an ever developing field of study purely based on the application of engineering principles and concepts to any aspect of dairy product manufacturing and operations. The last 25 years of science and technology devoted to milk and milk products have led to major advances. The purpose of this paper is to review the history and current status of some engineered milk products and to speculate regarding future trends. Much of the advancement has been directed towards production capacity, mechanisation, automation, hygiene within the processing plant, safety, extensions in shelf life, and new product introductions that bring variety and convenience for the consumer. Significant advancements in product quality have been made, many of these arising from improved knowledge of the functional properties of ingredients and their impact on structure and texture. In addition, further improvements focused on energy efficiency and environmental sustainability have been made and will be needed in the future.


Subject(s)
Dairy Products , Food Technology/methods , Food Technology/trends , Animals , Cheese , Costs and Cost Analysis , Cultured Milk Products , Dairy Products/economics , Dairying/history , Dairying/methods , Dairying/trends , Food Handling/methods , Food Preservation , History, 19th Century , History, 20th Century , History, 21st Century , History, Ancient , Milk/history
10.
J Dairy Res ; 83(3): 395-401, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27600977

ABSTRACT

Physical properties of lactose appeared influenced by presence of lactic acid in the system. Some other components such as Ca may further attenuate lactose behaviour and impact its phase transition. A model-based study was thus implemented with varying concentrations of Ca (0·12, 0·072 or 0·035% w/w) and lactic acid (0·05, 0·2, 0·4 or 1% w/w) in establishing the effects of these two main acid whey constituents on lactose phase behaviour. Concentrated solutions (50% w/w) containing lactose, lactic acid and Ca were analysed for thermal behaviour and structural changes by Differential Scanning Colorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR), respectively. Presence of 1% (w/w) lactic acid and 0·12% (w/w) Ca in lactose solution significantly increased the evaporation enthalpy of water, delayed and increased the energy required for lactose crystallisation as compared to pure lactose. FTIR analysis indicated a strong hydration layer surrounding lactose molecules, restricting water mobility and/or inducing structural changes of lactose, hindering its crystallisation. The formation of calcium lactate, which restricts the diffusion of lactose molecules, is also partly responsible. It appears that Ca removal from acid whey may be a necessary step in improving the processability of acid whey.


Subject(s)
Calcium/pharmacology , Lactic Acid/pharmacokinetics , Lactose/chemistry , Calcium/chemistry , Calorimetry, Differential Scanning , Crystallization , Lactic Acid/chemistry , Phase Transition/drug effects , Solutions , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Water/chemistry , Whey/chemistry
11.
J Dairy Sci ; 98(12): 8505-14, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26476948

ABSTRACT

The presence of high amounts of lactic acid in acid whey restricts its ability to be further processed because lactose appears to remain in its amorphous form. A systematic study is lacking in this regard especially during the concentration step. Hence, the main aim of the study was to establish the structure and behavior of water molecules surrounding lactose in the presence of 1% (wt/wt) lactic acid at a concentration up to 50% (wt/wt). Furthermore, the crystallization nature of freeze-dried lactose with or without lactic acid was established using differential scanning calorimetry and Fourier transform infrared spectroscopy. Two mechanisms were proposed to describe the behavior of water molecules around lactose molecules during the concentration of pure lactose and lactose solutions with lactic acid. Pure lactose solution exhibited a water evaporation enthalpy of ~679 J·g(-1), whereas lactose+ lactic acid solution resulted in ~965 J·g(-1) at a 50% (wt/wt) concentration. This indicates a greater energy requirement for water removal around lactose in the presence of lactic acid. Higher crystallization temperatures were observed with the presence of lactic acid, indicating a delay in crystallization. Furthermore, less crystalline lactose (~12%) was obtained in the presence of lactic acid, indicating high amorphous nature compared with pure lactose where ~50% crystallinity was obtained. The Fourier transform infrared spectra revealed that the strong hydration layer consisting lactic acid and H3O(+) ions surrounded lactose molecules via strong H bonds, which restricted water mobility, induced a change in structure of lactose, or both, creating unfavorable conditions for lactose crystallization. Thus, partial or complete removal of lactic acid from acid whey may be the first step toward improving the ability of acid whey to be processed.


Subject(s)
Lactic Acid/pharmacology , Lactose/chemistry , Water/chemistry , Animals , Calorimetry, Differential Scanning , Crystallization , Freeze Drying , Lactic Acid/administration & dosage , Lactic Acid/chemistry , Solutions/chemistry , Spectroscopy, Fourier Transform Infrared , Whey Proteins/chemistry
12.
J Dairy Sci ; 98(7): 4352-63, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25958284

ABSTRACT

Compositional differences of acid whey (AW) in comparison with other whey types limit its processability and application of conventional membrane processing. Hence, the present study aimed to identify chemical and physical properties of AW solutions as a function of pH (3 to 10.5) at 4 different temperatures (15, 25, 40, or 90°C) to propose appropriate membrane-processing conditions for efficient use of AW streams. The concentration of minerals, mainly calcium and phosphate, and proteins in centrifuged supernatants was significantly lowered with increase in either pH or temperature. Lactic acid content decreased with pH decline and rose at higher temperatures. Calcium appeared to form complexes with phosphates and lactates mainly, which in turn may have induced molecular attractions with the proteins. An increase in pH led to more soluble protein aggregates with large particle sizes. Surface hydrophobicity of these particles increased significantly with temperature up to 40°C and decreased with further heating to 90°C. Surface charge was clearly pH dependent. High lactic acid concentrations appeared to hinder protein aggregation by hydrophobic interactions and may also indirectly influence protein denaturation. Processing conditions such as pH and temperature need to be optimized to manipulate composition, state, and surface characteristics of components of AW systems to achieve an efficient separation and concentration of lactic acid and lactose.


Subject(s)
Cattle , Hot Temperature , Whey/chemistry , Animals , Hydrophobic and Hydrophilic Interactions , Lactic Acid/chemistry , Lactose/chemistry , Milk Proteins/chemistry , Particle Size , Temperature
13.
J Dairy Res ; 82(2): 135-42, 2015 May.
Article in English | MEDLINE | ID: mdl-25499614

ABSTRACT

The heat-induced changes in pH, Ca activity and viscosity after heating at 90 °C for 10 min of five modified skim milks were studied as a function of the initial pH of the milks at 25 °C. The milks had (i) different ratios of casein : whey protein (0.03, 1.74, 3.97, 5.27 and 7.25), (ii) the same total solids concentration (9% w/w) and (iii) prior to the adjustment of the pH, similar values of pH (6.67-6.74), concentration of serum calcium, and calcium activity, suggesting that the sera have similar mineral composition. The total protein concentrations of the milks differ (2.8-4.0%, w/w). The pH decrease in situ upon heating from 25-90 °C was similar for all the modified skim milks with the same starting pH, suggesting that the pH changes to milk on heating were primarily mediated by the initial mineral composition of the serum and were unaffected by the casein : whey protein ratio or the total protein content of the milk. The heat-induced changes in pH and calcium activity were largely reversible on cooling. The two milks with the lowest ratios of casein to whey protein gelled on heating to 90 °C for 10 min and cooling to 25 °C when the pH was adjusted to pH = 6.2 prior to heating. The viscosities of all other milks with casein to whey protein ratio of 3.97, 5.27 and 7.25 and/or pH ≥6.7 prior to heating did not change significantly. The effect of casein : whey protein ratio and the pH are the dominant factors in controlling the susceptibility to thickening of the milks on heating in this study.


Subject(s)
Caseins/chemistry , Hot Temperature , Milk/chemistry , Whey Proteins/chemistry , Animals , Calcium/chemistry , Cattle , Hydrogen-Ion Concentration , Powders , Rheology
14.
J Dairy Res ; 81(2): 238-44, 2014 May.
Article in English | MEDLINE | ID: mdl-24698480

ABSTRACT

The aggregation of proteins after heating of calcium-fortified milks has been an ongoing problem in the dairy industry. This undesirable effect restricts the manufacture of calcium rich dairy products. To overcome this problem, a completely new approach in controlling the heat stability of dairy protein solutions, developed in our lab, has been employed. In this approach, high intensity, low frequency ultrasound is applied for a very short duration after a pre-heating step at ⩾70 °C. The ultrasound breaks apart whey/whey and whey/casein aggregates through the process of acoustic cavitation. Protein aggregates do not reform on subsequent post-heating, thereby making the systems heat stable. In this paper, the acid gelation properties of ultrasonicated calcium-enriched skim milks have also been investigated. It is shown that ultrasonication alone does not change the gelation properties significantly whereas a sequence of preheating (72 °C/1 min) followed by ultrasonication leads to decreased gelation times, decreased gel syneresis and increased skim milk viscosity in comparison to heating alone. Overall, ultrasonication has the potential to provide calcium-fortified dairy products with increased heat stability. However, enhanced gelation properties can only be achieved when ultrasonication is completed in conjunction with heating.


Subject(s)
Calcium/administration & dosage , Food, Fortified , Gels/chemistry , Hot Temperature , Milk/chemistry , Sonication , Animals , Calcium, Dietary/administration & dosage , Caseins/chemistry , Drug Stability , Elasticity , Food Handling/methods , Food, Preserved , Hydrogen-Ion Concentration , Milk Proteins/analysis , Milk Proteins/chemistry , Particle Size , Solutions , Viscosity , Whey Proteins
15.
J Food Sci ; 89(7): 4372-4388, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38837376

ABSTRACT

High concentrations of carnauba waxes (CRWs) that can compromise organoleptic properties are required to create self-sustained and functional oleogels. The weak physical properties and stability of 4% w/w CRW-rice bran oil (RBO) oleogel were addressed by substituting CRW with beeswax (BW) in different weight ratios. The texture profile analyzer revealed that substituting only 10% (weight ratio) of CRW with BW improved the hardness compared to the mono-CRW oleogel. The hardness of binary oleogels increased gradually as the proportion of BW increased. At a BW ratio of 70% or more, the hardness was three times higher than that of mono-BW oleogel. Rheology analysis showed the same trend as the large deformation test; however, the hardest binary oleogels had lower critical strain and yield point compared to the mono-wax oleogels, implying that they are more prone to lose their structure upon applied stress. Nevertheless, nearly all binary mixtures (except for 10%BW90%CRW) showed oil-binding capacities above 99%, suggesting improved nucleation and crystallization process. Polarized light microscopy showed the coexistence of BW and CRW crystals and changes in the size and arrangement of wax crystals upon proportional changes of the two waxes. X-ray diffraction confirmed no differences in the peaks' location, and all oleogels had ß' polymorphism. Differential scanning calorimetry showed eutectic melting behavior in some binary blends. Oxidation stability in the binary wax oleogels improved as compared to the mono-wax oleogel and bulk RBO. BW and CRW mixtures have promising oil-structuring abilities and have various properties at different ratios that have the potential to be used as solid fat substitutes. PRACTICAL APPLICATION: As a trending green oil-structuring technology, oleogelation has shown great potential to reduce saturated fats in food systems. The current research provides valuable fundamental information on the strong synergistic interactions between beeswax and carnauba wax that have the potential to be used as solid fat substitutes created with a much lower total concentration of the required wax. This will help create wax oleogels with better organoleptic properties and less negative waxy mouthfeel. Such knowledge could prove beneficial for the development of healthy products that have potential applications in meat, bakery, dairy, pharmaceutical, as well as cosmetic industries.


Subject(s)
Organic Chemicals , Oxidation-Reduction , Rheology , Waxes , Waxes/chemistry , Organic Chemicals/chemistry , X-Ray Diffraction
16.
Foods ; 13(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38790816

ABSTRACT

The effect of shear on heat-induced changes in milk protein concentrate suspensions was examined at different pH levels, revealing novel insights into micellar dissociation and protein aggregation dynamics. Milk protein concentrate suspensions, adjusted to pH of 6.1, 6.4, 6.8, or 7.5, underwent combined heat (90 °C for 5 min or 121 °C for 2.6 min) and shear (0, 100, or 1000 s-1) treatment. The fragmentation of protein aggregates induced by shear was evident in the control MPC suspensions at pH 6.8, irrespective of the temperature. At pH 7.5, shear increased the heat-induced micellar dissociation. This effect was particularly pronounced at 121 °C and 1000 s-1, resulting in reduced particle size and an elevated concentration of κ-casein (κ-CN) in the non-sedimentable phase. At pH 6.1 or 6.4, shear effects were dependent on sample pH, thereby modifying electrostatic interactions and the extent of whey protein association with the micelles. At pH 6.1, shear promoted heat-induced aggregation, evidenced by an increase in particle size and a significant decline in both whey proteins and caseins in the non-sedimentable phase. At pH 6.4, shear-induced fragmentation of aggregates was observed, prominently due to comparatively higher electrostatic repulsions and fewer protein interactions. The influence of shear on heat-induced changes was considerably impacted by initial pH.

17.
Foods ; 13(2)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38254564

ABSTRACT

Milk protein concentrates (MPCs) possess significant potential for diverse applications in the food industry. However, their heat stability may be a limitation to achieving optimal functional performance. Shearing, an inherent process in food manufacturing, can also influence the functionality of proteins. The aim of this research was to examine the heat stability of reconstituted MPCs prepared at two protein concentrations (4% and 8% w/w protein) when subjected to varying levels of shearing (100, 1000, or 1500 s-1) during heating at 90 °C for 5 min or 121 °C for 2.6 min. While the impact of shear was relatively minor at 4% protein, it was more pronounced in 8% protein MPC suspensions, leading to a considerable decline in heat stability. An increase in protein concentration to 8% amplified protein interactions, intensified by shearing. This, in turn, resulted in comparatively higher aggregation at elevated temperatures and subsequently reduced the heat stability of the reconstituted MPCs.

18.
Foods ; 13(18)2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39335944

ABSTRACT

This study investigates the impact of substituting lactose with maltodextrin in milk-tea formulations to enhance their physicochemical and structural properties. Various lactose-to-maltodextrin ratios (100:0, 90:10, 85:15, 80:20, 75:25) were evaluated in both post-pasteurized and concentrated skim milk-tea (SM-T) and whole milk-tea (WM-T) formulations. Concentration significantly improved the zeta potential, pH, and browning index in both SM-T and WM-T compared to pasteurization. L:M ratios of 90:10 and 75:25 in WM-T and 90:10 and 80:20 in SM-T showed higher phenolic preservation after concentration due to structural changes resulting from the addition of maltodextrin and water removal during prolonged heating. The preservation effect of phenolic components in both WM-T and SM-T is governed by many mechanisms including pH stabilization, zeta potential modulation, protein interactions, complex formation, and encapsulation effects. Therefore, optimizing milk-tea stability and phenolic preservation through L:M ratio adjustments provides a promising approach for enhancing milk-tea properties.

19.
Foods ; 13(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39200417

ABSTRACT

The rapid increase in the production of powdered milk-tea blends is driven by a growing awareness of the presence of highly nutritious bioactive compounds and consumer demand for convenient beverages. However, the lack of literature on the impact of heat-induced component interactions during processing hinders the production of high-quality milk-tea powders. The production process of milk-tea powder blends includes the key steps of pasteurization, evaporation, and spray drying. Controlling heat-induced interactions, such as protein-protein, protein-carbohydrate, protein-polyphenol, carbohydrate-polyphenol, and carbohydrate-polyphenol, during pasteurization, concentration, and evaporation is essential for producing a high-quality milk-tea powder with favorable physical, structural, rheological, sensory, and nutritional qualities. Adjusting production parameters, such as the type and the composition of ingredients, processing methods, and processing conditions, is a great way to modify these interactions between components in the formulation, and thereby, provide improved properties and storage stability for the final product. Therefore, this review comprehensively discusses how molecular-level interactions among proteins, carbohydrates, and polyphenols are affected by various unit operations during the production of milk-tea powders.

20.
Food Chem ; 450: 139296, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38636381

ABSTRACT

Advanced targeted nanoparticles (NPs) were designed to enhance the targeted delivery of resveratrol (RES) and quercetin (QUE) by utilizing carboxymethyl chitosan (CTS) and Jiuzao glutelin isolate (JGI) conjugates. Briefly, RES and QUE were encapsuled within CTS-JGI-2 (CTS/JGI, m/m, 2:1). The carrier's targeting properties were further improved through the incorporation of folic acid (FA) and polyethylenimine (PEI). Moreover, the stability against digestion was enhanced by incorporating baker yeast cell walls (BYCWs) to construct RES-QUE/FA-PEI/CTS-JGI-2/MAT/BYCW NPs. The results demonstrated that FA-PEI/CTS-JGI-2/MAT/BYCW NPs could improve cellular uptake and targeting property of RES and QUE through endocytosis of folic acid receptors (FOLRs). Additionally, RES-QUE successfully alleviated LPS- and DSS-induced inflammation by regulating NF-κB/IkBa/AP-1 and AMPK/SIRT1signaling pathways and reducing the secretion of inflammatory mediators and factors. These findings indicate FA-PEI/CTS-JGI-2/MAT/BYCW NPs hold promise as an oral drug delivery system with targeted delivery capacities for functional substances prone to instability in dietary supplements.


Subject(s)
Chitosan , Folic Acid , Nanoparticles , Quercetin , Resveratrol , Chitosan/chemistry , Chitosan/pharmacology , Chitosan/analogs & derivatives , Folic Acid/chemistry , Folic Acid/pharmacology , Quercetin/chemistry , Quercetin/analogs & derivatives , Quercetin/pharmacology , Quercetin/administration & dosage , Nanoparticles/chemistry , Resveratrol/chemistry , Resveratrol/pharmacology , Resveratrol/administration & dosage , Animals , Mice , Humans , Drug Carriers/chemistry , Drug Delivery Systems , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL