Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Chembiochem ; 23(12): e202200186, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35467071

ABSTRACT

Human bleomycin hydrolase (hBH) catalyzes deamidation of the anticancer drug bleomycins (BLM). This enzyme is involved in BLM detoxification and drug resistance. Herein, we report the putative BLM-binding site and catalytic mechanism of hBH. The crystal structures and biochemical studies suggest that hBH cleaves its C-terminal residue without significant preference for the type of amino acid, and therefore can accordingly accommodate the ß-aminoalanine amide moiety of BLM for deamidation. Interestingly, hBH is capable of switching from a cysteine protease to a serine protease that is unable to cleave the secondary amide of hBH C-terminus but reacts with the primary amide of BLMs.


Subject(s)
Cysteine Proteases , Amides , Bleomycin/metabolism , Bleomycin/pharmacology , Cysteine Endopeptidases , Cysteine Proteases/metabolism , Humans , Mutation , Serine Proteases/metabolism , Structure-Activity Relationship
2.
Chembiochem ; 23(24): e202200563, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36278314

ABSTRACT

Capreomycidine (Cap) is a nonproteinogenic amino acid and building block of nonribosomal peptide (NRP) natural products. We report the formation and activation of Cap in capreomycin biosynthesis. CmnC and CmnD catalyzed hydroxylation and cyclization, respectively, of l-Arg to form l-Cap. l-Cap is then adenylated by CmnG-A before being incorporated into the nonribosomal peptide. The co-crystal structures of CmnG-A with l-Cap and adenosine nucleotides provide insights into the specificity and engineering opportunities of this unique adenylation domain.


Subject(s)
Amino Acids , Peptide Synthases , Peptide Synthases/metabolism , Capreomycin , Substrate Specificity , Peptides/chemistry
3.
Bioconjug Chem ; 33(11): 2180-2188, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36320124

ABSTRACT

Sensitive quantification of methoxy poly(ethylene glycol) (mPEG)-conjugated therapeutics for pharmacokinetic determination is critical for mPEGylated drug development. However, sensitive measurement of low-molecular-weight (lmw) mPEG compounds remains challenging due to epitope competition between backbone-specific anti-PEG antibodies. Here, we engineered a high-affinity methoxy-specific anti-mPEG antibody for sensitive quantification of free mPEG molecules and mPEGylated therapeutics. The affinity-enhanced h15-2Y antibody variant shows a 10.3-fold increase in mPEG-binding activity compared to parental h15-2b. h15-2Y-based sandwich ELISA can effectively quantify lmw mPEG5K and high-molecular-weight (hmw) mPEG20K at concentrations as low as 3.4 and 5.1 ng mL-1, respectively. Moreover, lmw mPEG compounds (560, 750, 1000, and 2000 Da) can be efficiently quantified via h15-2Y-based competitive ELISA with detection limits at nanomolar levels. This study provides a promising approach for application in the quantitative analysis of the various sizes of mPEG molecules to accelerate the timeline of mPEG-conjugated drug development.


Subject(s)
Antibodies , Polyethylene Glycols , Polyethylene Glycols/chemistry , Molecular Weight
4.
Angew Chem Int Ed Engl ; 61(38): e202208802, 2022 09 19.
Article in English | MEDLINE | ID: mdl-35904849

ABSTRACT

A unified strategy for the biomimetic total synthesis of the spiroindimicin family of natural products was reported. Key transformations include a one-pot two-enzyme-catalyzed oxidative dimerization of L-tryptophan/5-chloro-L-tryptophan to afford the bis-indole precursors chromopyrrolic acid/5',5''-dichloro-chromopyrrolic acid, and regioselective C3'-C2'' and C3'-C4'' bond formation converting a common bis-indole skeleton to two skeletally different natural products, including (±)-spiroindimicins D and G with a [5,5] spiro-ring skeleton, and (±)-spiroindimicins A and H with a [5,6] spiro-ring skeleton, respectively.


Subject(s)
Biological Products , Biological Products/chemistry , Biomimetics , Dimerization , Indoles/chemistry , Tryptophan/chemistry
5.
Biochemistry ; 60(1): 77-84, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33356147

ABSTRACT

Capreomycin (CMN) and viomycin (VIO) are nonribosomal peptide antituberculosis antibiotics, the structures of which contain four nonproteinogenic amino acids, including l-2,3-diaminopropionic acid (l-Dap), ß-ureidodehydroalanine, l-capreomycidine, and ß-lysine. Previous bioinformatics analysis suggested that CmnB/VioB and CmnK/VioK participate in the formation of l-Dap; however, the real substrates of these enzymes are yet to be confirmed. We herein show that starting from O-phospho-l-Ser (OPS) and l-Glu precursors, CmnB catalyzes the condensation reaction to generate a metabolite intermediate N-(1-amino-1-carboxyl-2-ethyl)glutamic acid (ACEGA), which undergoes NAD+-dependent oxidative hydrolysis by CmnK to generate l-Dap. Furthermore, the binding site of ACEGA and the catalytic mechanism of CmnK were elucidated with the assistance of three crystal structures, including those of apo-CmnK, the NAD+-CmnK complex, and CmnK in an alternative conformation. The CmnK-ACEGA docking model revealed that the glutamate α-hydrogen points toward the nicotinamide moiety. It provides evidence that the reaction is dependent on hydride transfer to form an imine intermediate, which is subsequently hydrolyzed by a water molecule to produce l-Dap. These findings modify the original proposed pathway and provide insights into l-Dap formation in the biosynthesis of other related natural products.


Subject(s)
Aminobutyrates/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Capreomycin/biosynthesis , Streptomyces/enzymology , Binding Sites , Catalysis , Crystallography, X-Ray , Hydrolysis , Models, Molecular , Substrate Specificity
6.
Nat Prod Rep ; 37(3): 425-463, 2020 03 25.
Article in English | MEDLINE | ID: mdl-31650156

ABSTRACT

Covering: up to July 2019 Terpene synthases (TSs) are responsible for generating much of the structural diversity found in the superfamily of terpenoid natural products. These elegant enzymes mediate complex carbocation-based cyclization and rearrangement cascades with a variety of electron-rich linear and cyclic substrates. For decades, two main classes of TSs, divided by how they generate the reaction-triggering initial carbocation, have dominated the field of terpene enzymology. Recently, several novel and unconventional TSs that perform TS-like reactions but do not resemble canonical TSs in sequence or structure have been discovered. In this review, we identify 12 families of non-canonical TSs and examine their sequences, structures, functions, and proposed mechanisms. Nature provides a wide diversity of enzymes, including prenyltransferases, methyltransferases, P450s, and NAD+-dependent dehydrogenases, as well as completely new enzymes, that utilize distinctive reaction mechanisms for TS chemistry. These unique non-canonical TSs provide immense opportunities to understand how nature evolved different tools for terpene biosynthesis by structural and mechanistic characterization while affording new probes for the discovery of novel terpenoid natural products and gene clusters via genome mining. With every new discovery, the dualistic paradigm of TSs is contradicted and the field of terpene chemistry and enzymology continues to expand.


Subject(s)
Alkyl and Aryl Transferases/chemistry , Alkyl and Aryl Transferases/metabolism , Aminophenols/chemistry , Aminophenols/metabolism , Cannabinoids/chemistry , Cannabinoids/metabolism , Cyclization , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Dimethylallyltranstransferase/chemistry , Dimethylallyltranstransferase/metabolism , Iridoids/chemistry , Iridoids/metabolism , Lyngbya Toxins/chemistry , Lyngbya Toxins/metabolism , Molecular Structure , Phenazines/chemistry , Phenazines/metabolism , Polycyclic Compounds/chemistry , Polycyclic Compounds/metabolism , Protein Conformation , Terpenes/chemistry , Terpenes/metabolism
7.
Nat Chem Biol ; 14(7): 730-737, 2018 07.
Article in English | MEDLINE | ID: mdl-29867143

ABSTRACT

Acyl-coenzyme A (CoA) ligases catalyze the activation of carboxylic acids via a two-step reaction of adenylation followed by thioesterification. Here, we report the discovery of a non-adenylating acyl-CoA ligase PtmA2 and the functional separation of an acyl-CoA ligase reaction. Both PtmA1 and PtmA2, two acyl-CoA ligases from the biosynthetic pathway of platensimycin and platencin, are necessary for the two steps of CoA activation. Gene inactivation of ptmA1 and ptmA2 resulted in the accumulation of free acid and adenylate intermediates, respectively. Enzymatic and structural characterization of PtmA2 confirmed its ability to only catalyze thioesterification. Structural characterization of PtmA2 revealed it binds both free acid and adenylate substrates and undergoes the established mechanism of domain alternation. Finally, site-directed mutagenesis restored both the adenylation and complete CoA activation reactions. This study challenges the currently accepted paradigm of adenylating enzymes and inspires future investigations on functionally separated acyl-CoA ligases and their ramifications in biology.


Subject(s)
Coenzyme A Ligases/metabolism , Biocatalysis , Carboxylic Acids/chemistry , Carboxylic Acids/metabolism , Coenzyme A Ligases/chemistry , Coenzyme A Ligases/isolation & purification , Esters/chemistry , Esters/metabolism , Models, Molecular , Molecular Structure , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism
8.
Biochemistry ; 57(23): 3278-3288, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29533601

ABSTRACT

C-1027 is a chromoprotein enediyne antitumor antibiotic, consisting of the CagA apoprotein and the C-1027 chromophore. The C-1027 chromophore features a nine-membered enediyne core appended with three peripheral moieties, including an ( S)-3-chloro-5-hydroxy-ß-tyrosine. In a convergent biosynthesis of the C-1027 chromophore, the ( S)-3-chloro-5-hydroxy-ß-tyrosine moiety is appended to the enediyne core by the free-standing condensation enzyme SgcC5. Unlike canonical condensation domains from the modular nonribosomal peptide synthetases that catalyze amide-bond formation, SgcC5 catalyzes ester-bond formation, as demonstrated in vitro, between SgcC2-tethered ( S)-3-chloro-5-hydroxy-ß-tyrosine and ( R)-1-phenyl-1,2-ethanediol, a mimic of the enediyne core as an acceptor substrate. Here, we report that (i) genes encoding SgcC5 homologues are widespread among both experimentally confirmed and bioinformatically predicted enediyne biosynthetic gene clusters, forming a new clade of condensation enzymes, (ii) SgcC5 shares a similar overall structure with the canonical condensation domains but forms a homodimer in solution, the active site of which is located in a cavity rather than a tunnel typically seen in condensation domains, and (iii) the catalytic histidine of SgcC5 activates the 2-hydroxyl group, while a hydrogen-bond network in SgcC5 prefers the R-enantiomer of the acceptor substrate, accounting for the regio- and stereospecific ester-bond formation between SgcC2-tethered ( S)-3-chloro-5-hydroxy-ß-tyrosine and ( R)-1-phenyl-1,2-ethanediol upon acid-base catalysis. These findings expand the catalytic repertoire and reveal new insights into the structure and mechanism of condensation enzymes.


Subject(s)
Antibiotics, Antineoplastic , Bacterial Proteins , Enediynes , Genes, Bacterial , Peptide Synthases , Streptomyces , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalysis , Enediynes/chemistry , Enediynes/metabolism , Peptide Synthases/chemistry , Peptide Synthases/genetics , Peptide Synthases/metabolism , Streptomyces/enzymology , Streptomyces/genetics
9.
Biochemistry ; 57(6): 1003-1011, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29341603

ABSTRACT

Recent biochemical characterizations of the MdpB2 CoA ligase and MdpB1 C-methyltransferase (C-MT) from the maduropeptin (MDP, 2) biosynthetic machinery revealed unusual pathway logic involving C-methylation occurring on a CoA-activated aromatic substrate. Here we confirmed this pathway logic for the biosynthesis of polyketomycin (POK, 3). Biochemical characterization unambiguously established that PokM3 and PokMT1 catalyze the sequential conversion of 6-methylsalicylic acid (6-MSA, 4) to form 3,6-dimethylsalicylyl-CoA (3,6-DMSA-CoA, 6), which serves as the direct precursor for the 3,6-dimethylsalicylic acid (3,6-DMSA) moiety in the biosynthesis of 3. PokMT1 catalyzes the C-methylation of 6-methylsalicylyl-CoA (6-MSA-CoA, 5) with a kcat of 1.9 min-1 and a Km of 2.2 ± 0.1 µM, representing the most proficient C-MT characterized to date. Bioinformatics analysis of MTs from natural product biosynthetic machineries demonstrated that PokMT1 and MdpB1 belong to a phylogenetic clade of C-MTs that preferably act on aromatic acids. Significantly, this clade includes the structurally characterized enzyme SibL, which catalyzes C-methylation of 3-hydroxykynurenine in its free acid form, using two conserved tyrosine residues for catalysis. A homology model and site-directed mutagenesis suggested that PokMT1 also employs this unusual arrangement of tyrosine residues to coordinate C-methylation but revealed a large cavity capable of accommodating the CoA moiety tethered to 5. CoA activation of the aromatic acid substrate may represent a general strategy that could be exploited to improve catalytic efficiency. This study sets the stage to further investigate and exploit the catalytic utility of this emerging family of C-MTs in biocatalysis and synthetic biology.


Subject(s)
Anti-Bacterial Agents/metabolism , Coenzyme A/metabolism , Glyoxylates/metabolism , Methyltransferases/metabolism , Streptomyces/enzymology , Biosynthetic Pathways , Cloning, Molecular , Coenzyme A Ligases/metabolism , Methyltransferases/genetics , Phylogeny , Streptomyces/genetics , Streptomyces/metabolism , Substrate Specificity
10.
J Nat Prod ; 81(3): 594-599, 2018 03 23.
Article in English | MEDLINE | ID: mdl-29345939

ABSTRACT

The potent cytotoxicity and unique mode of action make the enediyne antitumor antibiotic C-1027 an exquisite drug candidate for anticancer chemotherapy. However, clinical development of C-1027 has been hampered by its low titer from the original producer Streptomyces globisporus C-1027. Here we report three new C-1027 alternative producers, Streptomyces sp. CB00657, CB02329, and CB03608, from The Scripps Research Institute actinomycetes strain collection. Together with the previously disclosed Streptomyces sp. CB02366 strain, four C-1027 alternative producers with C-1027 titers of up to 11-fold higher than the original producer have been discovered. The five C-1027 producers, isolated from distant geographic locations, are distinct Streptomyces strains based on morphology and taxonomy. Pulsed-field gel electrophoresis and Southern analysis of the five C-1027 producers reveal that their C-1027 biosynthetic gene clusters (BGCs) are all located on giant plasmids of varying sizes. The high nucleotide sequence similarity among the five C-1027 BGCs implies that they most likely have evolved from a common ancestor.


Subject(s)
Aminoglycosides/genetics , Antibiotics, Antineoplastic/metabolism , Enediynes/metabolism , Bacterial Proteins/genetics , DNA, Bacterial/genetics , Multigene Family/genetics , Plasmids/genetics , Streptomyces/genetics
11.
Angew Chem Int Ed Engl ; 57(7): 1802-1807, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29243887

ABSTRACT

It is theoretically plausible that thiazolium mesomerizes to congeners other than carbene in a low effective dielectric binding site; especially given the energetics and uneven electronegativity of carbene groups. However, such a phenomenon has never been reported. Nine crystal structures of transketolase obtained from Pichia stipitis (TKps) are reported with subatomic resolution, where thiazolium displays an extraordinary ring-bending effect. The bent thiazolium congeners correlate with non-Kekulé diradicals because there is no gain or loss of electrons. In conjunction with biophysical and biochemical analyses, it is concluded that ring bending is a result of tautomerization of thiazolium with its non- Kekulé diradicals, exclusively in the binding site of TKps. The chemophysical properties of these thiazolium mesomers may account for the great variety of reactivities carried out by thiamine-diphosphate-containing (ThDP) enzymes. The stability of ThDP in living systems can be regulated by the levels of substrates, and hydration and dehydration, as well as diradical-mediated oxidative degradation.


Subject(s)
Fungal Proteins/metabolism , Pichia/enzymology , Thiazoles/metabolism , Transketolase/metabolism , Catalytic Domain , Crystallography, X-Ray , Fungal Proteins/chemistry , Fungal Proteins/genetics , Isomerism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Thiamine Pyrophosphate/metabolism , Thiazoles/chemistry , Transketolase/chemistry , Transketolase/genetics
12.
Nat Prod Rep ; 34(9): 1141-1172, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28758170

ABSTRACT

Covering: up to January 2017Cytochrome P450 enzymes (P450s) are some of the most exquisite and versatile biocatalysts found in nature. In addition to their well-known roles in steroid biosynthesis and drug metabolism in humans, P450s are key players in natural product biosynthetic pathways. Natural products, the most chemically and structurally diverse small molecules known, require an extensive collection of P450s to accept and functionalize their unique scaffolds. In this review, we survey the current catalytic landscape of P450s within the Streptomyces genus, one of the most prolific producers of natural products, and comprehensively summarize the functionally characterized P450s from Streptomyces. A sequence similarity network of >8500 P450s revealed insights into the sequence-function relationships of these oxygen-dependent metalloenzymes. Although only ∼2.4% and <0.4% of streptomycete P450s have been functionally and structurally characterized, respectively, the study of streptomycete P450s involved in the biosynthesis of natural products has revealed their diverse roles in nature, expanded their catalytic repertoire, created structural and mechanistic paradigms, and exposed their potential for biomedical and biotechnological applications. Continued study of these remarkable enzymes will undoubtedly expose their true complement of chemical and biological capabilities.


Subject(s)
Biological Products , Cytochrome P-450 Enzyme System , Streptomyces , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/metabolism , Catalysis , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Humans , Molecular Structure , Streptomyces/chemistry , Streptomyces/enzymology , Streptomyces/genetics
13.
Biochemistry ; 55(36): 5142-54, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27560143

ABSTRACT

C-1027 is a chromoprotein enediyne antitumor antibiotic produced by Streptomyces globisporus. In the last step of biosynthesis of the (S)-3-chloro-5-hydroxy-ß-tyrosine moiety of the C-1027 enediyne chromophore, SgcE6 and SgcC compose a two-component monooxygenase that hydroxylates the C-5 position of (S)-3-chloro-ß-tyrosine. This two-component monooxygenase is remarkable for two reasons. (i) SgcE6 specifically reacts with FAD and NADH, and (ii) SgcC is active with only the peptidyl carrier protein (PCP)-tethered substrate. To address the molecular details of substrate specificity, we determined the crystal structures of SgcE6 and SgcC at 1.66 and 2.63 Å resolution, respectively. SgcE6 shares a similar ß-barrel fold with the class I HpaC-like flavin reductases. A flexible loop near the active site of SgcE6 plays a role in FAD binding, likely by providing sufficient space to accommodate the AMP moiety of FAD, when compared to that of FMN-utilizing homologues. SgcC shows structural similarity to a few other known FADH2-dependent monooxygenases and sheds light on some biochemically but not structurally characterized homologues. The crystal structures reported here provide insights into substrate specificity, and comparison with homologues provides a catalytic mechanism of the two-component, FADH2-dependent monooxygenase (SgcE6 and SgcC) that catalyzes the hydroxylation of a PCP-tethered substrate.


Subject(s)
Aminoglycosides/biosynthesis , Anti-Bacterial Agents/biosynthesis , Sarcoglycans/chemistry , Streptomyces/metabolism , Catalysis , Crystallography, X-Ray , Enediynes , Humans , Hydroxylation
14.
J Am Chem Soc ; 138(34): 10905-15, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27490479

ABSTRACT

Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three α-helical domains (αßγ), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (α) and type II TSs (ßγ). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtmT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 Å, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg(2+)-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.


Subject(s)
Alkyl and Aryl Transferases/chemistry , Alkyl and Aryl Transferases/metabolism , Organophosphates/metabolism , Streptomyces/enzymology , Catalytic Domain , Models, Molecular
15.
Biochemistry ; 54(45): 6842-51, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26512730

ABSTRACT

The bleomycins (BLMs), tallysomycins (TLMs), phleomycin, and zorbamycin (ZBM) are members of the BLM family of glycopeptide-derived antitumor antibiotics. The BLM-producing Streptomyces verticillus ATCC15003 and the TLM-producing Streptoalloteichus hindustanus E465-94 ATCC31158 both possess at least two self-resistance elements, an N-acetyltransferase and a binding protein. The N-acetyltransferase provides resistance by disrupting the metal-binding domain of the antibiotic that is required for activity, while the binding protein confers resistance by sequestering the metal-bound antibiotic and preventing drug activation via molecular oxygen. We recently established that the ZBM producer, Streptomyces flavoviridis ATCC21892, lacks the N-acetyltransferase resistance gene and that the ZBM-binding protein, ZbmA, is sufficient to confer resistance in the producing strain. To investigate the resistance mechanism attributed to ZbmA, we determined the crystal structures of apo and Cu(II)-ZBM-bound ZbmA at high resolutions of 1.90 and 1.65 Å, respectively. A comparison and contrast with other structurally characterized members of the BLM-binding protein family revealed key differences in the protein-ligand binding environment that fine-tunes the ability of ZbmA to sequester metal-bound ZBM and supports drug sequestration as the primary resistance mechanism in the producing organisms of the BLM family of antitumor antibiotics.


Subject(s)
Antibiotics, Antineoplastic/chemistry , Bacterial Proteins/chemistry , Carrier Proteins/chemistry , Drug Resistance, Microbial/physiology , Streptomyces/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Carbohydrate Conformation , Carrier Proteins/genetics , Carrier Proteins/metabolism , Conserved Sequence , Crystallization , Crystallography, X-Ray , Drug Resistance, Microbial/genetics , Genes, Bacterial , Glycopeptides/metabolism , Glycopeptides/pharmacology , Ligands , Models, Molecular , Molecular Sequence Data , Molecular Structure , Protein Conformation , Sequence Alignment , Sequence Homology, Amino Acid , Streptomyces/genetics , Structure-Activity Relationship
16.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 5): 1401-10, 2014 May.
Article in English | MEDLINE | ID: mdl-24816108

ABSTRACT

Utilization of N-acetylhexosamine in bifidobacteria requires the specific lacto-N-biose/galacto-N-biose pathway, a pathway differing from the Leloir pathway while establishing symbiosis between humans and bifidobacteria. The gene lnpB in the pathway encodes a novel hexosamine kinase NahK, which catalyzes the formation of N-acetylhexosamine 1-phosphate (GlcNAc-1P/GalNAc-1P). In this report, seven three-dimensional structures of NahK in complex with GlcNAc, GalNAc, GlcNAc-1P, GlcNAc/AMPPNP and GlcNAc-1P/ADP from both Bifidobacterium longum (JCM1217) and B. infantis (ATCC15697) were solved at resolutions of 1.5-2.2 Å. NahK is a monomer in solution, and its polypeptide folds in a crescent-like architecture subdivided into two domains by a deep cleft. The NahK structures presented here represent the first multiple reaction complexes of the enzyme. This structural information reveals the molecular basis for the recognition of the given substrates and products, GlcNAc/GalNAc, GlcNAc-1P/GalNAc-1P, ATP/ADP and Mg(2+), and provides insights into the catalytic mechanism, enabling NahK and mutants thereof to form a choice of biocatalysts for enzymatic and chemoenzymatic synthesis of carbohydrates.


Subject(s)
Bifidobacterium/enzymology , Phosphotransferases/chemistry , Phosphotransferases/metabolism , Acetylglucosamine/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Bifidobacterium/metabolism , Binding Sites , Crystallography, X-Ray , Magnesium/metabolism , Models, Molecular , Mutagenesis, Site-Directed , Phosphotransferases/genetics , Protein Conformation , Substrate Specificity
17.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 6): 1549-60, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24914966

ABSTRACT

In biological systems, methylation is most commonly performed by methyltransferases (MTs) using the electrophilic methyl source S-adenosyl-L-methionine (SAM) via the S(N)2 mechanism. (2S,3S)-ß-Methylphenylalanine, a nonproteinogenic amino acid, is a building unit of the glycopeptide antibiotic mannopeptimycin. The gene product of mppJ from the mannopeptimycin-biosynthetic gene cluster is the MT that methylates the benzylic C atom of phenylpyruvate (Ppy) to give ßMePpy. Although the benzylic C atom of Ppy is acidic, how its nucleophilicity is further enhanced to become an acceptor for C-methylation has not conclusively been determined. Here, a structural approach is used to address the mechanism of MppJ and to engineer it for new functions. The purified MppJ displays a turquoise colour, implying the presence of a metal ion. The crystal structures reveal MppJ to be the first ferric ion SAM-dependent MT. An additional four structures of binary and ternary complexes illustrate the molecular mechanism for the metal ion-dependent methyltransfer reaction. Overall, MppJ has a nonhaem iron centre that bind, orients and activates the α-ketoacid substrate and has developed a sandwiched bi-water device to avoid the formation of the unwanted reactive oxo-iron(IV) species during the C-methylation reaction. This discovery further prompted the conversion of the MT into a structurally/functionally unrelated new enzyme. Through stepwise mutagenesis and manipulation of coordination chemistry, MppJ was engineered to perform both Lewis acid-assisted hydration and/or O-methyltransfer reactions to give stereospecific new compounds. This process was validated by six crystal structures. The results reported in this study will facilitate the development and design of new biocatalysts for difficult-to-synthesize biochemicals.


Subject(s)
Iron/chemistry , Methyltransferases/chemistry , Crystallography, X-Ray , Models, Molecular , Protein Conformation , Protein Engineering , Streptomyces/enzymology
18.
J Am Chem Soc ; 136(31): 10989-95, 2014 Aug 06.
Article in English | MEDLINE | ID: mdl-25095906

ABSTRACT

Teicoplanin A2-2 (Tei)/A40926 is the last-line antibiotic to treat multidrug-resistant Gram-positive bacterial infections, e.g., methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococcus (VRE). This class of antibiotics is powered by the N-acyltransferase (NAT) Orf11*/Dbv8 through N-acylation on glucosamine at the central residue of Tei/A40926 pseudoaglycone. The NAT enzyme possesses enormous value in untapped applications; its advanced development is hampered largely due to a lack of structural information. In this report, we present eight high-resolution X-ray crystallographic unary, binary, and ternary complexes in order to decipher the molecular basis for NAT's functionality. The enzyme undergoes a multistage conformational change upon binding of acyl-CoA, thus allowing the uploading of Tei pseudoaglycone to enable the acyl-transfer reaction to take place in the occlusion between the N- and C-halves of the protein. The acyl moiety of acyl-CoA can be bulky or lengthy, allowing a large extent of diversity in new derivatives that can be formed upon its transfer. Vancomycin/synthetic acyl-N-acetyl cysteamine was not expected to be able to serve as a surrogate for an acyl acceptor/donor, respectively. Most strikingly, NAT can catalyze formation of 2-N,6-O-diacylated or C6→C2 acyl-substituted Tei analogues through an unusual 1,4-migration mechanism under stoichiometric/solvational reaction control, wherein selected representatives showed excellent biological activities, effectively counteracting major types (VanABC) of VRE.


Subject(s)
Acyltransferases/metabolism , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Glycopeptides/chemical synthesis , Glycopeptides/pharmacology , Vancomycin-Resistant Enterococci/drug effects , Acylation , Acyltransferases/chemistry , Anti-Bacterial Agents/chemistry , Biocatalysis , Chemistry Techniques, Synthetic , Glycopeptides/chemistry , Models, Molecular , Protein Structure, Tertiary , Structure-Activity Relationship
19.
Angew Chem Int Ed Engl ; 53(7): 1943-8, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24505011

ABSTRACT

Streptothricin-F (STT-F), one of the early-discovered antibiotics, consists of three components, a ß-lysine homopolymer, an aminosugar D-gulosamine, and an unusual bicyclic streptolidine. The biosynthesis of streptolidine is a long-lasting but unresolved puzzle. Herein, a combination of genetic/biochemical/structural approaches was used to unravel this problem. The STT gene cluster was first sequenced from a Streptomyces variant BCRC 12163, wherein two gene products OrfP and OrfR were characterized in vitro to be a dihydroxylase and a cyclase, respectively. Thirteen high-resolution crystal structures for both enzymes in different reaction intermediate states were snapshotted to help elucidate their catalytic mechanisms. OrfP catalyzes an Fe(II) -dependent double hydroxylation reaction converting L-Arg into (3R,4R)-(OH)2 -L-Arg via (3S)-OH-L-Arg, while OrfR catalyzes an unusual PLP-dependent elimination/addition reaction cyclizing (3R,4R)-(OH)2 -L-Arg to the six-membered (4R)-OH-capreomycidine. The biosynthetic mystery finally comes to light as the latter product was incorporation into STT-F by a feeding experiment.


Subject(s)
Amino Acids/chemical synthesis , Streptothricins/chemical synthesis , Amino Acids/chemistry , Hydroxylation , Mixed Function Oxygenases/chemistry , Streptothricins/chemistry
20.
Protein Sci ; 33(9): e5124, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39145427

ABSTRACT

Spatial hindrance-based pro-antibodies (pro-Abs) are engineered antibodies to reduce monoclonal antibodies' (mAbs) on-target toxicity using universal designed blocking segments that mask mAb antigen-binding sites through spatial hindrance. By linking through protease substrates and linkers, these blocking segments can be removed site-specifically. Although many types of blocking segments have been developed, such as coiled-coil and hinge-based Ab locks, the molecular structure of the pro-Ab, particularly the region showing how the blocking fragment blocks the mAb, has not been elucidated by X-ray crystallography or cryo-EM. To achieve maximal effect, a pro-Ab must have high antigen-blocking and protease-restoring efficiencies, but the unclear structure limits its further optimization. Here, we utilized molecular dynamics (MD) simulations to study the dynamic structures of a hinge-based Ab lock pro-Ab, pro-Nivolumab, and validated the simulated structures with small- and wide-angle X-ray scattering (SWAXS). The MD results were closely consistent with SWAXS data (χ2 best-fit = 1.845, χ2 allMD = 3.080). The further analysis shows a pronounced flexibility of the Ab lock (root-mean-square deviation = 10.90 Å), yet it still masks the important antigen-binding residues by 57.3%-88.4%, explaining its 250-folded antigen-blocking efficiency. The introduced protease accessible surface area method affirmed better protease efficiency for light chain (33.03 Å2) over heavy chain (5.06 Å2), which aligns with the experiments. Overall, we developed MD-SWAXS validation method to study the dynamics of flexible blocking segments and introduced methodologies to estimate their antigen-blocking and protease-restoring efficiencies, which would potentially be advancing the clinical applications of any spatial hindrance-based pro-Ab.


Subject(s)
Antibodies, Monoclonal , Molecular Dynamics Simulation , Scattering, Small Angle , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , X-Ray Diffraction , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Antigens/chemistry , Antigens/immunology , Humans , Protein Conformation , Crystallography, X-Ray
SELECTION OF CITATIONS
SEARCH DETAIL