Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Am Chem Soc ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39172701

ABSTRACT

Hyoscyamine 6ß-hydroxylase (H6H) is an iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenase that produces the prolifically administered antinausea drug, scopolamine. After its namesake hydroxylation reaction, H6H then couples the newly installed C6 oxygen to C7 to produce the drug's epoxide functionality. Oxoiron(IV) (ferryl) intermediates initiate both reactions by cleaving C-H bonds, but it remains unclear how the enzyme switches the target site and promotes (C6)O-C7 coupling in preference to C7 hydroxylation in the second step. In one possible epoxidation mechanism, the C6 oxygen would─analogously to mechanisms proposed for the Fe/2OG halogenases and, in our more recent study, N-acetylnorloline synthase (LolO)─coordinate as alkoxide to the C7-H-cleaving ferryl intermediate to enable alkoxyl coupling to the ensuing C7 radical. Here, we provide structural and kinetic evidence that H6H does not employ substrate coordination or repositioning for the epoxidation step but instead exploits the distinct spatial dependencies of competitive C-H cleavage (C6 vs C7) and C-O-coupling (oxygen rebound vs cyclization) steps to promote the two-step sequence. Structural comparisons of ferryl-mimicking vanadyl complexes of wild-type H6H and a variant that preferentially 7-hydroxylates instead of epoxidizing 6ß-hydroxyhyoscyamine suggest that a modest (∼10°) shift in the Fe-O-H(C7) approach angle is sufficient to change the outcome. The 7-hydroxylation:epoxidation partition ratios of both proteins increase more than 5-fold in 2H2O, reflecting an epoxidation-specific requirement for cleavage of the alcohol O-H bond, which, unlike in the LolO oxacyclization, is not accomplished by iron coordination in advance of C-H cleavage.

2.
Chembiochem ; : e202400307, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900645

ABSTRACT

Non-heme mononuclear iron dependent (NHM-Fe) enzymes exhibit exceedingly diverse catalytic reactivities. Despite their catalytic versatilities, the mononuclear iron centers in these enzymes show a relatively simple architecture, in which an iron atom is ligated with 2-4 amino acid residues, including histidine, aspartic or glutamic acid. In the past two decades, a common high-valent reactive iron intermediate, the S=2 oxyferryl (Fe(IV)-oxo or Fe(IV)=O) species, has been repeatedly discovered in NHM-Fe enzymes containing a 2-His-Fe or 2-His-1-carboxylate-Fe center. However, for 3-His/4-His-Fe enzymes, no common reactive intermediate has been identified. Recently, we have spectroscopically characterized the first S=1 Fe(IV) intermediate in a 3-His-Fe containing enzyme, OvoA, which catalyzes a novel oxidative carbon-sulfur bond formation. In this review, we summarize the broad reactivities demonstrated by S=2 Fe(IV)-oxo intermediates, the discovery of the first S=1 Fe(IV) intermediate in OvoA and the mechanistic implication of such a discovery, and the intrinsic reactivity differences of the S=2 and the S=1 Fe(IV)-oxo species. Finally, we postulate the possible reasons to utilize an S=1 Fe(IV) species in OvoA and their implications to other 3-His/4-His-Fe enzymes.

3.
Microb Pathog ; 193: 106712, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851360

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is a major challenge for the global swine industry, causing huge economic losses worldwide. To date, there are no effective measures to prevent and control the spread of PRRS virus (PRRSV). Baicalin (BA) is a natural flavonoid with various pharmacological effects, including antiviral, anti-inflammatory, antioxidant and immunomodulatory. Here, we demonstrate that BA exhibits potent anti-PRRSV activity in vitro, BA concentrations in the range of 5-20 µg/mL significantly inhibited PRRSV infection in a dose-dependent manner and were independent of PRRSV strain. Mechanistically, BA inhibited PRRSV replication by directly interacting with virions, thereby affecting multiple stages of the virus life cycle. Meanwhile, the preventive effect of BA on PRRSV could be realized by inhibiting CD151 and CD163 expression. Furthermore, BA reduced the PRRSV-induced expression of PAMs cytokines (IFN-α, IL-6, IL-8, and TNF-α), suggesting that BA-induced antiviral cytokines may help BA inhibit PRRSV infection. Taken together, BA can be used as an inhibitor of PRRSV infection in vitro, which provides a theoretical basis for the clinical application of BA and the prevention and control of PRRSV infection, which is worthy of further in vivo studies in swine.


Subject(s)
Antiviral Agents , Cytokines , Flavonoids , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Virus Replication , Porcine respiratory and reproductive syndrome virus/drug effects , Animals , Flavonoids/pharmacology , Antiviral Agents/pharmacology , Swine , Virus Replication/drug effects , Cytokines/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/drug therapy , Antigens, CD/metabolism , Receptors, Cell Surface/metabolism , Cell Line , Antigens, Differentiation, Myelomonocytic
4.
Int J Mol Sci ; 25(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38612772

ABSTRACT

Oral cancer ranks fourth among malignancies among Taiwanese men and is the eighth most common cancer among men worldwide in terms of general diagnosis. The purpose of the current study was to investigate how low-density lipoprotein receptor-related protein 1B (LDL receptor related protein 1B; LRP1B) gene polymorphisms affect oral squamous cell carcinoma (OSCC) risk and progression in individuals with diabetes mellitus (DM). Three LRP1B single-nucleotide polymorphisms (SNPs), including rs10496915, rs431809, and rs6742944, were evaluated in 311 OSCC cases and 300 controls. Between the case and control groups, we found no evidence of a significant correlation between the risk of OSCC and any of the three specific SNPs. Nevertheless, in evaluating the clinicopathological criteria, individuals with DM who possess a minimum of one minor allele of rs10496915 (AC + CC; p = 0.046) were significantly associated with tumor size compared with those with homozygous major alleles (AA). Similarly, compared to genotypes homologous for the main allele (GG), rs6742944 genotypes (GA + AA; p = 0.010) were more likely to develop lymph node metastases. The tongue and the rs6742944 genotypes (GA + AA) exhibited higher rates of advanced clinical stages (p = 0.024) and lymph node metastases (p = 0.007) when compared to homozygous alleles (GG). LRP1B genetic polymorphisms appear to be prognostic and diagnostic markers for OSCC and DM, as well as contributing to genetic profiling research for personalized medicine.


Subject(s)
Carcinoma, Squamous Cell , Diabetes Mellitus , Head and Neck Neoplasms , Mouth Neoplasms , Male , Humans , Mouth Neoplasms/genetics , Lymphatic Metastasis , Carcinoma, Squamous Cell/genetics , Polymorphism, Single Nucleotide , Squamous Cell Carcinoma of Head and Neck , Receptors, LDL/genetics
5.
ACS Catal ; 14(7): 4975-4983, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38895101

ABSTRACT

A number of bacteria are known to produce isonitrile-containing peptides (INPs) that facilitate metal transport and are important for cell survival; however, considerable structural variation is observed among INPs depending on the producing organism. While non-heme iron 2-oxoglutarate dependent isonitrilases catalyze isonitrile formation, how the natural variation in INP structure is controlled and its implications for INP bioactivity remain open questions. Herein, total chemical synthesis is utilized with X-Ray crystallographic analysis of mycobacterial isonitrilases to provide a structural model of substrate specificity that explains the longer alkyl chains observed in mycobacterial versus Streptomyces INPs. Moreover, proton NMR titration experiments demonstrate that INPs regardless of alkyl chain length are specific for binding copper instead of zinc. These results suggest that isonitrilases may act as gatekeepers in modulating the observed biological distribution of INP structures and this distribution may be primarily related to differing metal transport requirements among the producing strains.

6.
Nat Commun ; 15(1): 1310, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38346985

ABSTRACT

Poly-γ-glutamate tails are a distinctive feature of archaeal, bacterial, and eukaryotic cofactors, including the folates and F420. Despite decades of research, key mechanistic questions remain as to how enzymes successively add glutamates to poly-γ-glutamate chains while maintaining cofactor specificity. Here, we show how poly-γ-glutamylation of folate and F420 by folylpolyglutamate synthases and γ-glutamyl ligases, non-homologous enzymes, occurs via processive addition of L-glutamate onto growing γ-glutamyl chain termini. We further reveal structural snapshots of the archaeal γ-glutamyl ligase (CofE) in action, crucially including a bulged-chain product that shows how the cofactor is retained while successive glutamates are added to the chain terminus. This bulging substrate model of processive poly-γ-glutamylation by terminal extension is arguably ubiquitous in such biopolymerisation reactions, including addition to folates, and demonstrates convergent evolution in diverse species from archaea to humans.


Subject(s)
Folic Acid , Glutamic Acid , Humans , Peptide Synthases/metabolism , Bacteria/metabolism , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL