Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Blood ; 143(4): 320-335, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-37801708

ABSTRACT

ABSTRACT: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer with resistant clonal propagation in recurrence. We performed high-throughput droplet-based 5' single-cell RNA with paired T-cell receptor (TCR) sequencing of paired diagnosis-relapse (Dx_Rel) T-ALL samples to dissect the clonal diversities. Two leukemic evolutionary patterns, "clonal shift" and "clonal drift" were unveiled. Targeted single-cell DNA sequencing of paired Dx_Rel T-ALL samples further corroborated the existence of the 2 contrasting clonal evolution patterns, revealing that dynamic transcriptional variation might cause the mutationally static clones to evolve chemotherapy resistance. Analysis of commonly enriched drifted gene signatures showed expression of the RNA-binding protein MSI2 was significantly upregulated in the persistent TCR clonotypes at relapse. Integrated in vitro and in vivo functional studies suggested that MSI2 contributed to the proliferation of T-ALL and promoted chemotherapy resistance through the posttranscriptional regulation of MYC, pinpointing MSI2 as an informative biomarker and novel therapeutic target in T-ALL.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , RNA-Binding Proteins , Humans , Clonal Evolution/genetics , Drug Resistance, Neoplasm/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptors, Antigen, T-Cell/genetics , Recurrence , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , T-Lymphocytes/metabolism
2.
Ann Rheum Dis ; 82(10): 1348-1358, 2023 10.
Article in English | MEDLINE | ID: mdl-37474274

ABSTRACT

OBJECTIVES: The aim of this study is to profile the transcriptional landscapes of affected tissues and peripheral blood mononuclear cells (PBMCs) at the single-cell level in IgG4-related disease (IgG4-RD). Identifying the cell populations and crosstalk between immune cells and non-immune cells will assist us in understanding the aetiology of IgG4-RD. METHODS: We performed single-cell RNA sequencing analysis on submandibular glands (SMGs) and PBMCs from patients with IgG4-RD and matched controls. Additionally, bulk RNA sequencing of PBMCs was used to construct the immune repertoire. Furthermore, multiplex immunofluorescence staining was performed to validate the transcriptomic results. RESULTS: We identified three novel subsets of tissue-resident immune cells in the SMGs of patients with IgG4-RD. TOP2A_B cells and TOP2A_T cells had stemness signatures, and trajectory analysis showed that TOP2A_B cells may differentiate into IgG4+plasma cells and that TOP2A_T cells may differentiate into T follicular helper (Tfh) cells. ICOS_PD-1_B cells with Tfh-like characteristics appeared to be an intermediate state in the differentiation from B cells to IgG4+plasma cells. The cellular communication patterns within immune cells and between immune cells and non-immune cells were altered in IgG4-RD compared with controls. Consistently, infection-related pathways were shared in B cells and T cells from SMGs and PBMCs. Furthermore, immune clonotype analysis of PBMC samples showed the complementary determining region 3 amino acid CQQSYSTPYTF was expanded in patients with IgG4-RD. CONCLUSION: Our data revealed the cellular and molecular changes at the single-cell resolution of IgG4-RD and provide valuable insights into the aetiology and novel therapeutic targets of the autoimmune disease.


Subject(s)
Immunoglobulin G4-Related Disease , Humans , Immunoglobulin G4-Related Disease/genetics , Leukocytes, Mononuclear , Submandibular Gland , Single-Cell Gene Expression Analysis , Immunoglobulin G
3.
J Autoimmun ; 136: 103026, 2023 04.
Article in English | MEDLINE | ID: mdl-37001436

ABSTRACT

Acquired aplastic anemia (AA) is recognized as an immune-mediated disorder resulting from active destruction of hematopoietic cells in bone marrow (BM) by effector T lymphocytes. Bulk genomic landscape analysis and transcriptomic profiling have contributed to a better understanding of the recurrent cytogenetic abnormalities and immunologic cues associated with the onset of hematopoietic destruction. However, the functional mechanistic determinants underlying the complexity of heterogeneous T lymphocyte populations as well as their correlation with clinical outcomes remain to be elucidated. To uncover dysfunctional mechanisms acting within the heterogeneous marrow-infiltrating immune environment and examine their pathogenic interplay with the hematopoietic stem/progenitor pool, we exploited single-cell mass cytometry for BM mononuclear cells of severe AA (SAA) patients pre- and post-immunosuppressive therapy, in contrast to those of healthy donors. Alignment of BM cellular composition with hematopoietic developmental trajectories revealed potential functional roles for non-canonically activated CD4+ naïve T cells in newly-diagnosed pediatric cases of SAA. Furthermore, single-cell transcriptomic profiling highlighted a population of Th17-polarized CD4+CAMK4+ naïve T cells showing activation of the IL-6/JAK3/STAT3 pathway, while gene signature dissection indicated a predisposition to proinflammatory pathogenesis. Retrospective validation from our SAA cohort of 231 patients revealed high plasma levels of IL-6 as an independent risk factor of delayed hematopoietic response to antithymocyte globulin-based immunosuppressive therapy. Thus, IL-6 warrants further investigation as a putative therapeutic target in SAA.


Subject(s)
Anemia, Aplastic , Humans , Child , Anemia, Aplastic/genetics , Anemia, Aplastic/pathology , Interleukin-6/genetics , Retrospective Studies , Th17 Cells , Single-Cell Analysis , Janus Kinase 3 , STAT3 Transcription Factor/genetics
4.
Nat Cell Biol ; 24(2): 242-252, 2022 02.
Article in English | MEDLINE | ID: mdl-35145224

ABSTRACT

Minimal residual disease that persists after chemotherapy is the most valuable prognostic marker for haematological malignancies and solid cancers. Unfortunately, our understanding of the resistance elicited in minimal residual disease is limited due to the rarity and heterogeneity of the residual cells. Here we generated 161,986 single-cell transcriptomes to analyse the dynamic changes of B-cell acute lymphoblastic leukaemia (B-ALL) at diagnosis, residual and relapse by combining single-cell RNA sequencing and B-cell-receptor sequencing. In contrast to those at diagnosis, the leukaemic cells at relapse tended to shift to poorly differentiated states, whereas the changes in the residual cells were more complicated. Differential analyses highlighted the activation of the hypoxia pathway in residual cells, resistant clones and B-ALL with MLL rearrangement. Both in vitro and in vivo models demonstrated that inhibition of the hypoxia pathway sensitized leukaemic cells to chemotherapy. This single-cell analysis of minimal residual disease opens up an avenue for the identification of potent treatment opportunities for B-ALL.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Drug Resistance, Neoplasm/genetics , Gene Expression Profiling , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , RNA-Seq , Receptors, Antigen, B-Cell/genetics , Single-Cell Analysis , Transcriptome , Age Factors , Animals , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Cell Line, Tumor , Coculture Techniques , Humans , Machine Learning , Mice , Mice, Inbred NOD , Neoplasm, Residual , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Predictive Value of Tests , Recurrence , Time Factors , Treatment Outcome , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
PLoS One ; 8(11): e79730, 2013.
Article in English | MEDLINE | ID: mdl-24232741

ABSTRACT

Two phenolic compound parameters (total phenolic and flavonoid contents) and 5 antioxidant parameters (DPPH [2, 2-diphenyl-1-picrylhydrazyl] radical scavenging activity, HRSC (hydroxyl radical scavenging capacity), FRAP (ferric ion reducing antioxidant power), CUPRAC (cupric ion reducing antioxidant capacity), and MCA (metal chelating activity) were measured in bulbs and bolts of 43 garlic cultivars. The bulbs of cultivar '74-x' had the highest phenolic content (total phenolic, flavonoids) and the strongest antioxidant capacity (DPPH, FRAP, and CUPRAC), followed by bulbs of cultivar 'Hanzhong purple'; the bulbs of cultivar 'Gailiang' had the lowest phenolic content and antioxidant capacity (FRAP, CUPRAC, MCA). The bolts of 'Hanzhong purple' also had higher phenolic content. Principal components analysis (PCA) separated the cultivars into 3 groups according to phenolic and flavonoid contents and strength of antioxidant activity. The first group had higher HRSC, FRAP, and flavonoid content; the second group had higher total phenolic content and MCA; some cultivars in the third group had higher HRSC and FRAP. All 8 test garlic bulb extracts successfully prevented Human Vascular Endothelial Cell death and significantly prevented reactive-oxygen species (ROS) formation in oxidative stress model, in which cultivar '74-x' had highest protection capability, following by cultivar 'Hanzhong purple', and the bulbs of cultivar 'No. 105 from Korea' had the lower protection capability against cell death and ROS formation. The protection capability in vivo of these garlic cultivars was consistent with their phenolic content and antioxidant capacity.


Subject(s)
Antioxidants/chemistry , Garlic/chemistry , Polyphenols/chemistry , Antioxidants/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Flavonoids/chemistry , Humans , Hydroxyl Radical/antagonists & inhibitors , Oxidative Stress/drug effects , Phenols/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL