Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Biochem Biophys Res Commun ; 579: 54-61, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34587555

ABSTRACT

1,2-ß-Mannobiose phosphorylases (1,2-ß-MBPs) from glycoside hydrolase 130 (GH130) family are important bio-catalysts in glycochemistry applications owing to their ability in synthesizing oligomannans. Here, we report the crystal structure of a thermostable 1,2-ß-MBP from Thermoanaerobacter sp. X-514 termed Teth514_1789 to reveal the molecular basis of its higher thermostability and mechanism of action. We also solved the enzyme complexes of mannose, mannose-1-phosphate (M1P) and 1,4-ß-mannobiose to manifest the enzyme-substrate interaction networks of three main subsites. Notably, a Zn ion that should be derived from crystallization buffer was found in the active site and coordinates the phosphate moiety of M1P. Nonetheless, this Zn-coordination should reflect an inhibitory status as supplementing Zn severely impairs the enzyme activity. These results indicate that the effects of metal ions should be taken into consideration when applying Teth514_1789 and other related enzymes. Based on the structure, a reliable model of Teth514_1788 that shares 61.7% sequence identity to Teth514_1789 but displays a different substrate preference was built. Analyzing the structural features of these two closely related enzymes, we hypothesized that the length of a loop fragment that covers the entrance of the catalytic center might regulate the substrate selectivity. In conclusion, these information provide in-depth understanding of GH130 1,2-ß-MBPs and should serve as an important guidance for enzyme engineering for further applications.


Subject(s)
Thermoanaerobacter/enzymology , beta-Mannosidase/chemistry , Binding Sites , Catalysis , Catalytic Domain , Glycoside Hydrolases/chemistry , Ions , Ligands , Mannans/chemistry , Mannose/chemistry , Mannosephosphates/chemistry , Phosphorylases/chemistry , Plasmids/metabolism , Protein Conformation , Reproducibility of Results , Static Electricity , Temperature , Zinc/chemistry
2.
Org Biomol Chem ; 17(8): 2070-2076, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30628619

ABSTRACT

LepI is a novel multifunctional enzyme that catalyzes stereoselective dehydration, Diels-Alder reaction, and retro-Claisen rearrangement. Here we report the crystal structure of LepI in complex with its co-factor S-adenosyl methionine (SAM). LepI forms a tetramer via the N-terminal helical domain and binds to a SAM molecule in the C-terminal catalytic domain. The binding modes of various LepI substrates are investigated by docking simulations, which suggest that the substrates are bound via both hydrophobic and hydrophilic forces, as well as cation-π interactions with the positively charged SAM. The reaction starts with a dehydration step in which H133 possibly deprotonates the pyridone hydroxyl group of the substrate, while D296 might protonate an alkyl-chain hydroxyl group. Subsequent pericyclization may be facilitated by the correct fold of the substrate's alkyl chain and a thermodynamic driving force towards σ-bonds at the expense of π-bonds. These results provide structural insights into LepI catalysis and are important in understanding the mechanism of enzymatic pericyclization.


Subject(s)
Aspergillus nidulans/enzymology , Benzopyrans/metabolism , Fungal Proteins/metabolism , Pyridones/metabolism , S-Adenosylmethionine/metabolism , Amino Acid Sequence , Aspergillus nidulans/chemistry , Aspergillus nidulans/metabolism , Biosynthetic Pathways , Catalytic Domain , Crystallography, X-Ray , Cycloaddition Reaction , Fungal Proteins/chemistry , Molecular Docking Simulation , Protein Conformation , Protein Multimerization , Stereoisomerism
3.
Appl Microbiol Biotechnol ; 101(7): 2919-2929, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28028551

ABSTRACT

Biotechnological applications of microbial pectate lyases (Pels) in plant fiber processing are promising, eco-friendly substitutes for conventional chemical degumming processes. However, to potentiate the enzymes' use for industrial applications, resolving the molecular structure to elucidate catalytic mechanisms becomes necessary. In this manuscript, we report the high resolution (1.45 Å) crystal structure of pectate lyase (pelN) from Paenibacillus sp. 0602 in apo form. Through sequence alignment and structural superposition with other members of the polysaccharide lyase (PL) family 1 (PL1), we determined that pelN shares the characteristic right-handed ß-helix and is structurally similar to other members of the PL1 family, while exhibiting key differences in terms of catalytic and substrate binding residues. Then, based on information from structure alignments with other PLs, we engineered a novel pelN. Our rational design yielded a pelN mutant with a temperature for enzymatic activity optimally shifted from 67.5 to 60 °C. Most importantly, this pelN mutant displayed both higher specific activity and ramie fiber degumming ability when compared with the wild-type enzyme. Altogether, our rational design method shows great potential for industrial applications. Moreover, we expect the reported high-resolution crystal structure to provide a solid foundation for future rational, structure-based engineering of genetically enhanced pelNs.


Subject(s)
Boehmeria/chemistry , Boehmeria/metabolism , Paenibacillus/enzymology , Plant Gums/metabolism , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biotechnology/methods , Cloning, Molecular , Crystallography, X-Ray , Hydrogen-Ion Concentration , Industrial Microbiology , Mutation , Sequence Alignment , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL