Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Language
Publication year range
1.
Heliyon ; 10(4): e25406, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38370176

ABSTRACT

Objective: This study aims to develop a predictive model using artificial intelligence to estimate the ICU length of stay (LOS) for Congenital Heart Defects (CHD) patients after surgery, improving care planning and resource management. Design: We analyze clinical data from 2240 CHD surgery patients to create and validate the predictive model. Twenty AI models are developed and evaluated for accuracy and reliability. Setting: The study is conducted in a Brazilian hospital's Cardiovascular Surgery Department, focusing on transplants and cardiopulmonary surgeries. Participants: Retrospective analysis is conducted on data from 2240 consecutive CHD patients undergoing surgery. Interventions: Ninety-three pre and intraoperative variables are used as ICU LOS predictors. Measurements and main results: Utilizing regression and clustering methodologies for ICU LOS (ICU Length of Stay) estimation, the Light Gradient Boosting Machine, using regression, achieved a Mean Squared Error (MSE) of 15.4, 11.8, and 15.2 days for training, testing, and unseen data. Key predictors included metrics such as "Mechanical Ventilation Duration", "Weight on Surgery Date", and "Vasoactive-Inotropic Score". Meanwhile, the clustering model, Cat Boost Classifier, attained an accuracy of 0.6917 and AUC of 0.8559 with similar key predictors. Conclusions: Patients with higher ventilation times, vasoactive-inotropic scores, anoxia time, cardiopulmonary bypass time, and lower weight, height, BMI, age, hematocrit, and presurgical oxygen saturation have longer ICU stays, aligning with existing literature.

2.
Rev. bras. cir. cardiovasc ; 33(3): 224-232, May-June 2018. tab, graf
Article in English | LILACS | ID: biblio-958406

ABSTRACT

Abstract Objective: Hemodilution is a concern in cardiopulmonary bypass (CPB). Using a smaller dual tubing rather than a single larger inner diameter (ID) tubing in the venous limb to decrease prime volume has been a standard practice. The purpose of this study is to evaluate these tubing options. Methods: Four different CPB circuits primed with blood (hematocrit 30%) were investigated. Two setups were used with two circuits for each one. In Setup I, a neonatal oxygenator was connected to dual 3/16" ID venous limbs (Circuit A) or to a single 1/4" ID venous limb (Circuit B); and in Setup II, a pediatric oxygenator was connected to dual 1/4" ID venous limbs (Circuit C) or a single 3/8" ID venous limb (Circuit D). Trials were conducted at arterial flow rates of 500 ml/min up to 1500 ml/min (Setup I) and up to 3000 ml/min (Setup II), at 36°C and 28°C. Results: Circuit B exhibited a higher venous flow rate than Circuit A, and Circuit D exhibited a higher venous flow rate than Circuit C, at both temperatures. Flow resistance was significantly higher in Circuits A and C than in Circuits B (P<0.001) and D (P<0.001), respectively. Conclusion: A single 1/4" venous limb is better than dual 3/16" venous limbs at all flow rates, up to 1500 ml/min. Moreover, a single 3/8" venous limb is better than dual 1/4" venous limbs, up to 3000 ml/min. Our findings strongly suggest a revision of perfusion practice to include single venous limb circuits for CPB.


Subject(s)
Humans , Oxygenators/standards , Cardiopulmonary Bypass/instrumentation , Cannula/standards , Pediatrics/instrumentation , Reference Standards , Temperature , Time Factors , Venous Pressure/physiology , Blood Flow Velocity/physiology , Cardiopulmonary Bypass/methods , Reproducibility of Results , Equipment Design , Equipment Safety , Hemodilution , Models, Cardiovascular
SELECTION OF CITATIONS
SEARCH DETAIL