Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Nanotechnology ; 31(23): 235703, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32059208

ABSTRACT

A hydroxyapatite whisker (w-HA) was synthesized via dissolution-precipitation by forming calcium-ethylene diamine tetra acetic acid (Ca-EDTA) complexing. The hydroxyapatite whisker was formed with precipitation of Ca2+ along the c-axis due to the space inhibition of Ca-EDTA complex during refluxing. The op-w-HA (oligomeric poly(lactic acid) modified w-HA), p-w-HA (poly(L-lactide) modified w-HA) and pc-w-HA (poly(L-lactide) and cyclodextrin modified w-HA) were obtained via the surface modification of w-HA. The particle size, surface charge and biocompatibility of theses modified w-HA particles were successfully adjusted. Among these materials, pc-w-HA exhibited nearly no toxicity, better adhesion to mesenchymal stem cells (MSCs) (5 times better than w-HA) and greater osteoinductivity among the obtained materials (40% of mineralized extracellular matrix higher than w-HA) due to better surface properties. Different kinds of powders (w-HA, p-w-HA and pc-w-HA) were blended with PLLA (poly(L-Lactide)) to form a composite material, respectively. The pc-w-HA/PLLA composite showed better mechanical properties (tensile strength of the pc-w-HA/PLLA composite was 22.3% higher than that of w-HA/PLLA), which could be attributed to mainly two factors including the structure preservation of w-HA bundles and pseudorotaxane linkage between PLA-cyclodextrin and PLLA. The MSCs adhesion of the pc-w-HA/PLLA composite was much better due to balanced hydrophilicity/hydrophobicity and surface roughness. This surface modification method could provide a new and effective strategy for the preparation of bioresorbable composite material with great bioactivity and mechanical property, which has great potential in the medical device industry.

2.
Small ; 14(27): e1801040, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29862636

ABSTRACT

A novel type of sticky superhydrophobic cerium dioxide (CeO2 ) nanotube material is prepared by hydrothermal treatment without any chemical modification. A water droplet on the material surface shows a static water contact angle of about 157° but the water droplet is pinned on the material surface even when the material surface is turned upside down. Interestingly, the as-prepared CeO2 nanotube material displays durable superhydrophobicity and enhanced adhesion to water under ultraviolet (UV) light irradiation. Importantly, this change in water adhesion can be reversed by heat treatment to restore the original adhesive value of 20 µL. Further, the maximum volume of the water droplet adhered on the material surface of CeO2 nanotubes can be regulated without loss of superhydrophobicity during the heating treatment/UV-irradiation cycling. Meanwhile, the superhydrophobic CeO2 nanotube material shows remarkable thermal stability even at temperatures as high as 450 °C, long-term durability in chemical environment, and air-storage and good resistance to oily contaminant. Finally, the potential application in no-loss water transportation of this sticky superhydrophobic CeO2 material is demonstrated.

3.
Materials (Basel) ; 17(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38893884

ABSTRACT

One of the most effective strategies for modifying the surface properties of nano-fillers and enhancing their composite characteristics is through polymer grafting. In this study, a coprecipitation method was employed to modify hydroxyapatite (HAP) with epoxidized soybean oleic acid (ESOA), resulting in ESOA-HAP. Subsequently, oligomeric poly(lactic acid) (OPLA) was grafted onto the surface of ESOA-HAP, yielding OPLA-ESOA-HAP. HAP, ESOA-HAP, and OPLA-ESOA-HAP were comprehensively characterized. The results demonstrate the progressive grafting of ESOA and OPLA onto the surface of HAP, resulting in enhanced hydrophobicity and improved dispersity in organic solvent for OPLA-ESOA-HAP compared to HAP. The vitality and adhesion of Wistar rat mesenchymal stem cells (MSCs) were assessed using HAP and modified HAP materials. Following culture with MSCs for 72 h, the OPLA-ESOA-HAP showed an inhibition rate lower than 23.0% at a relatively high concentration (1.0 mg/mL), which is three times lower compared to HAP under similar condition. The cell number for OPLA-ESOA-HAP was 4.5 times higher compared to HAP, indicating its superior biocompatibility. Furthermore, the mechanical properties of the OPLA-ESOA-HAP/PLLA composite almost remained unaltered ever after undergoing two stages of thermal processing involving melt extrusion and inject molding. The increase in the biocompatibility and relatively high mechanical properties render OPLA-ESOA-HAP/PLLA a potential material for the biodegradable fixation system.

4.
ACS Appl Mater Interfaces ; 13(3): 3899-3910, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33438995

ABSTRACT

Mixed-valence metal-organic frameworks (MOFs) have exhibited unique potential in fields such as catalysis and gas separation. However, it is still an open challenge to prepare mixed-valence MOFs with isolated Ce(IV, III) arrays due to the easy formation of CeIII under the synthetic conditions for MOFs. Meanwhile, the performance of Li-S batteries is greatly limited by the fatal shuttle effect and the slow transmission rate of Li+ caused by the inherent characteristics of sulfur species. Here, we report a mixed-valence cerium MOF, named CSUST-1 (CSUST stands for Changsha University of Science and Technology), with isolated Ce(IV, III) arrays and abundant oxygen vacancies (OVs), synthesized as guided by the facile and elaborate kinetic stability study of UiO-66(Ce), to work as an efficient separator coating for circumventing both issues at the same time. Benefiting from the synergistic function of the Ce(IV, III) arrays (redox couples), the abundant OVs, and the open Ce sites within CSUST-1, the CSUST-1/CNT composite, as a separator coating material in the Li-S battery, can remarkably accelerate the redox kinetics of the polysulfides and the Li+ transportation. Consequently, the Li-S cell with the CSUST-1/CNT-coated separator exhibited a high initial specific capacity of 1468 mA h/g at 0.1 C and maintained long-term stability for a capacity of 538 mA h/g after 1200 cycles at 2 C with a decay rate of only 0.037% per cycle. Even at a high sulfur loading of 8 mg/cm2, the cell with the CSUST/CNT-coated separator still demonstrated excellent performance with an initial areal capacity of 8.7 mA h/cm2 at 0.1 C and retained the areal capacity of 6.1 mA h/cm2 after 60 cycles.

5.
RSC Adv ; 9(7): 3965-3971, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-35518097

ABSTRACT

This study presents a TiO2/C hybrid material with biomimetic channels fabricated using a wood template. Repeated impregnations of pretreated wood chips in a Ti precursor were conducted, followed by calcination at 400-600 °C for 4 hours under a nitrogen atmosphere. The generated TiO2 nanocrystals were homogenously distributed inside a porous carbon framework. With an extremely low Pt catalyst loading (0.04-0.1 wt%), the obtained porous catalyst could effectively oxidize formaldehyde to CO2 and H2O even under room temperature (conv. ∼100%). Wood acted as both a structural template and reduction agent for Pt catalyst generation in sintering. Therefore, no post H2 reduction treatment for catalyst activation was required. The hierarchal channel structures, including 2-10 nm mesopores and 20 µm diameter channels, could be controlled by calcination temperature and atmosphere, which was confirmed by SEM and BET characterizations. Based on the abundant availability of wood templates and reduced cost for low Pt loading, this preparation method shows great potential for large-scale applications.

6.
Front Chem ; 6: 286, 2018.
Article in English | MEDLINE | ID: mdl-30140669

ABSTRACT

Proton exchange membrane is the key factor of vanadium redox flow battery (VRB) as their stability largely determine the lifetime of the VRB. In this study, a SPEEK/MWCNTs-OH composite membrane with ultrahigh stability is constructed by blending sulfonated poly(ether ether ketone) (SPEEK) with multi-walled carbon nanotubes toward VRB application. The carbon nanotubes disperse homogeneously in the SPEEK matrix with the assistance of hydroxyl group. The blended membrane exhibits 94.2 and 73.0% capacity retention after 100 and 500 cycles, respectively in a VRB single cell with coulombic efficiency of over 99.4% at 60 mA cm-2 indicating outstanding capability of reducing the permeability of vanadium ions and enhancing the transport of protons. The ultrahigh stability and low cost of the composite membrane make it a competent candidate for the next generation larger-scale vanadium redox flow battery.

7.
ChemSusChem ; 11(13): 2229-2238, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29920986

ABSTRACT

The utilization of biomass sugars has received great interesting recently. Herein, we present a highly efficient hybrid solar biomass fuel cell that utilizes thermal- and photocatalysis of solar irradiation and converts biomass sugars into electricity with high power output. The fuel cell uses polyoxometalates (POMs) as photocatalyst to decompose sugars and capture their electrons. The reduced POMs have strong visible and near-infrared light adsorption, which can significantly increase the temperature of the reaction system and largely promotes the thermal oxidation of sugars by the POM. In addition, the reduced POM functions as charge carrier that can release electrons at the anode in the fuel cell to generate electricity. The electron-transfer rates from glucose to POM under thermal and light-irradiation conditions were investigated in detail. The power outputs of this solar biomass fuel cell are investigated by using different types of sugars as fuels, with the highest power density reaching 45 mW cm-2 .

8.
Dalton Trans ; 45(6): 2720-39, 2016 Feb 14.
Article in English | MEDLINE | ID: mdl-26745008

ABSTRACT

Highly siliceous HZSM-5 zeolite supported nickel catalysts prepared by a deposition-precipitation (D-P) method were characterized by Fourier transform infrared (FT-IR), hydrogen temperature programmed reduction (H2-TPR), X-ray diffraction (XRD), N2-absorption/desorption, field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and (27)Al magic-angle nuclear magnetic resonance (MAS NMR) techniques. The results showed that the D-P of nickel species occurred predominantly on the internal surface of highly siliceous HZSM-5 zeolite, in which the internal silanol groups located on the hydroxylated mesopores or nanocavities played a key role. During the D-P process, nickel hydroxide was first deposited-precipitated via olation/polymerization of neutral hydroxoaqua nickel species over the HZSM-5 zeolite. With the progress of the D-P process, 1 : 1 nickel phyllosilicate was formed over the HZSM-5 via the hetero-condensation/polymerization between charged hydroxoaqua nickel species and monomer silicic species generated due to the partial dissolution of the HZSM-5 framework. The 1 : 1 nickel phyllosilicate could also be generated via the hydrolytic adsorption of hydroxoaqua nickel species and their subsequent olation condensation. After calcination, the deposited-precipitated nickel hydroxide was decomposed into nickel oxide, while the 1 : 1 nickel phyllosilicate was transformed into 2 : 1 nickel phyllosilicate. According to the above mechanism, Ni(ii) species were present both in the form of nickel oxide and 2 : 1 nickel phyllosilicate, which were mutually separated from each other, being highly dispersed over HZSM-5 zeolite.

9.
Dalton Trans ; 44(3): 1023-38, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25407395

ABSTRACT

A simple and convenient approach denoted as gel-deposition-precipitation (G-D-P) for the preparation of core-shell-like silica@nickel species nanoparticles was studied systematically. Core-shell-like silica@nickel species nanoparticles consisted of a Si-rich core and a Ni-rich shell. The G-D-P process included two steps: one was the deposition-precipitation of nickel over the gelled colloidal silica particle, generating core-shell-like silica@nickel species nanoparticles, and the other was the aging period. It was found that the nickel phyllosilicate layer was formed mainly during the aging period and served as the protective cover to resist against aggregation of the nanoparticles, which could be utilized for regulating the dispersion of nickel over the silica@nickel species nanoparticles. In the present paper, the silica@nickel species nanoparticles were used as the catalysts for preparing catechol via dehydrogenation of 1,2-cyclohexanediol. Their catalytic activity and long-term stability were compared to those of a catalyst prepared by a conventional deposition-precipitation (D-P) approach. The higher activity and better stability of the title reaction over the silica@nickel species nanoparticles catalyst prepared by G-D-P than those over the catalyst prepared by D-P could be due to the higher dispersion of metallic nickel stabilized by the layers of nickel phyllosilicates. Moreover, it was found that the dehydrogenation of 1,2-cyclohexanediol to catechol was a structurally sensitive reaction.

10.
J Hazard Mater ; 266: 167-73, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24394670

ABSTRACT

The phosgene-free synthesis of hexamethylene-1,6-diisocyanate (HDI) by the decomposition of dimethylhexane-1,6-dicarbamate (HDU) was carried out on a self-designed fixed-bed catalytic reactor, using zinc-incorporated berlinite (ZnAlPO4) as catalyst, dioctyl phthalate (DOP) as solvent and N2 as carrier gas. Factors influencing the yield of HDI, including the Zn/Al molar ratio, HDU concentration and liquid space velocity (LHSV), were investigated. Under the optimized reaction conditions, i.e., 4.8 wt.% concentration of HDU in DOP, 100ml/min N2 flow rate, 0.09 MPa vacuum, 623K reaction temperature, 1.2h(-1) LHSV and catalyst usage 2.0 g, a 89.4% yield of HDI had been achieved over the ZnAlPO4 (molar ratio Zn/Al=0.04) catalyst. The ZnAlPO4 catalyst was found to exhibit a considerable large on-stream stability and could be repeatedly used in the decomposition of HDU to HDI, after its regeneration.


Subject(s)
Aluminum Compounds/chemistry , Carbamates/chemistry , Isocyanates/chemistry , Phosphates/chemistry , Zinc/chemistry , Catalysis , Green Chemistry Technology , Phosgene
11.
Chem Cent J ; 1: 27, 2007 Nov 07.
Article in English | MEDLINE | ID: mdl-17988376

ABSTRACT

BACKGROUND: The alkoxycarbonylation of diamines with dialkyl carbonates presents promising route for the synthesis of dicarbamates, one that is potentially 'greener' owing to the lack of a reliance on phosgene. While a few homogeneous catalysts have been reported, no heterogeneous catalyst could be found in the literature for use in the synthesis of dicarbamates from diamines and dialkyl carbonates. Because heterogeneous catalysts are more manageable than homogeneous catalysts as regards separation and recycling, in our study, we hydrothermally synthesized and used pure berlinite (AlPO4) and zinc-incorporated berlinite (ZnAlPO4) as heterogeneous catalysts in the production of dimethylhexane-1,6-dicarbamate from 1,6-hexanediamine (HDA) and dimethyl carbonate (DMC). The catalysts were characterized by means of XRD, FT-IR and XPS. Various influencing factors, such as the HDA/DMC molar ratio, reaction temperature, reaction time, and ZnAlPO4/HDA ratio, were investigated systematically. RESULTS: The XRD characterization identified a berlinite structure associated with both the AlPO4 and ZnAlPO4 catalysts. The FT-IR result confirmed the incorporation of zinc into the berlinite framework for ZnAlPO4. The XPS measurement revealed that the zinc ions in the ZnAlPO4 structure possessed a higher binding energy than those in ZnO, and as a result, a greater electron-attracting ability. It was found that ZnAlPO4 catalyzed the formation of dimethylhexane-1,6-dicarbamate from the methoxycarbonylation of HDA with DMC, while no activity was detected on using AlPO4. Under optimum reaction conditions (i.e. a DMC/HDA molar ratio of 8:1, reaction temperature of 349 K, reaction time of 8 h, and ZnAlPO4/HDA ratio of 5 (mg/mmol)), a yield of up to 92.5% of dimethylhexane-1,6-dicarbamate (with almost 100% conversion of HDA) was obtained. Based on these results, a possible mechanism for the methoxycarbonylation over ZnAlPO4 was also proposed. CONCLUSION: As a heterogeneous catalyst ZnAlPO4 berlinite is highly active and selective for the methoxycarbonylation of HDA with DMC. We propose that dimethylhexane-1,6-dicarbamate is formed via a catalytic cycle, which involves activation of the DMC by a key active intermediate species, formed from the coordination of the carbonyl oxygen with Zn(II), as well as a reaction intermediate formed from the nucleophilic attack of the amino group on the carbonyl carbon.

12.
Langmuir ; 20(18): 7517-25, 2004 Aug 31.
Article in English | MEDLINE | ID: mdl-15323497

ABSTRACT

Mesostructured V-Mg oxides were synthesized using the surfactant cetyltrimethylammonium bromide (CTAB) as template, V2O5, V(acac)3 (vanadium acetylacetonate), or NH4VO3 as vanadium source, and Mg(NO3)2, MgCl2, MgSO4, (MgCO3)4.Mg(OH)2, Mg(CH3CO2)2, or Mg(C2H5O)2 as magnesium source. The factors that influence the formation of mesostructured V-Mg oxides, such as the pH, the natures of magnesium and vanadium sources, and the ionic strength, were identified. The formation of mesophases could be related to the presence of anionic vanadium species, to the electrostatic interactions between the oppositely charged vanadates and micellar headgroups, and to the nature of the counterion of Mg2+ in the magnesium source. The main role was played by the pH and only when the pH allowed the formation of vanadates was a mesostructure generated. The counterions of Mg2+ also played a role, which could be explained via specific ion effects and the formation of complexes between them and the vanadium-containing species, which are attracted by the headgroups of the micellar templates.

SELECTION OF CITATIONS
SEARCH DETAIL