Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Proc Natl Acad Sci U S A ; 119(41): e2208649119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36191230

ABSTRACT

Neuronal intranuclear inclusion disease (NIID) is a neuromuscular/neurodegenerative disease caused by the expansion of CGG repeats in the 5' untranslated region (UTR) of the NOTCH2NLC gene. These repeats can be translated into a polyglycine-containing protein, uN2CpolyG, which forms protein inclusions and is toxic in cell models, albeit through an unknown mechanism. Here, we established a transgenic Drosophila model expressing uN2CpolyG in multiple systems, which resulted in progressive neuronal cell loss, locomotor deficiency, and shortened lifespan. Interestingly, electron microscopy revealed mitochondrial swelling both in transgenic flies and in muscle biopsies of individuals with NIID. Immunofluorescence and immunoelectron microscopy showed colocalization of uN2CpolyG with mitochondria in cell and patient samples, while biochemical analysis revealed that uN2CpolyG interacted with a mitochondrial RNA binding protein, LRPPRC (leucine-rich pentatricopeptide repeat motif-containing protein). Furthermore, RNA sequencing (RNA-seq) analysis and functional assays showed down-regulated mitochondrial oxidative phosphorylation in uN2CpolyG-expressing flies and NIID muscle biopsies. Finally, idebenone treatment restored mitochondrial function and alleviated neurodegenerative phenotypes in transgenic flies. Overall, these results indicate that transgenic flies expressing uN2CpolyG recapitulate key features of NIID and that reversing mitochondrial dysfunction might provide a potential therapeutic approach for this disorder.


Subject(s)
Drosophila , Neurodegenerative Diseases , 5' Untranslated Regions , Animals , Animals, Genetically Modified , Drosophila/genetics , Intranuclear Inclusion Bodies/genetics , Intranuclear Inclusion Bodies/pathology , Leucine/genetics , Mitochondria/genetics , Mitochondria/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , RNA-Binding Proteins/genetics , Trinucleotide Repeat Expansion/genetics
2.
EMBO J ; 39(4): e100574, 2020 02 17.
Article in English | MEDLINE | ID: mdl-31930538

ABSTRACT

Expansion of G4C2 repeats within the C9ORF72 gene is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Such repeats lead to decreased expression of the autophagy regulator C9ORF72 protein. Furthermore, sense and antisense repeats are translated into toxic dipeptide repeat (DPR) proteins. It is unclear how these repeats are translated, and in which way their translation and the reduced expression of C9ORF72 modulate repeat toxicity. Here, we found that sense and antisense repeats are translated upon initiation at canonical AUG or near-cognate start codons, resulting in polyGA-, polyPG-, and to a lesser degree polyGR-DPR proteins. However, accumulation of these proteins is prevented by autophagy. Importantly, reduced C9ORF72 levels lead to suboptimal autophagy, thereby impairing clearance of DPR proteins and causing their toxic accumulation, ultimately resulting in neuronal cell death. Of clinical importance, pharmacological compounds activating autophagy can prevent neuronal cell death caused by DPR proteins accumulation. These results suggest the existence of a double-hit pathogenic mechanism in ALS/FTD, whereby reduced expression of C9ORF72 synergizes with DPR protein accumulation and toxicity.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Autophagy , C9orf72 Protein/genetics , Dipeptides/toxicity , Frontotemporal Dementia/genetics , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/metabolism , Cell Death , DNA Repeat Expansion , Dipeptides/genetics , Frontotemporal Dementia/pathology , HEK293 Cells , Humans , Neurons/pathology , Proteins/genetics , Proteins/toxicity
3.
Am J Hum Genet ; 106(4): 438-452, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32197073

ABSTRACT

The neuro-oncological ventral antigen 2 (NOVA2) protein is a major factor regulating neuron-specific alternative splicing (AS), previously associated with an acquired neurologic condition, the paraneoplastic opsoclonus-myoclonus ataxia (POMA). We report here six individuals with de novo frameshift variants in NOVA2 affected with a severe neurodevelopmental disorder characterized by intellectual disability (ID), motor and speech delay, autistic features, hypotonia, feeding difficulties, spasticity or ataxic gait, and abnormal brain MRI. The six variants lead to the same reading frame, adding a common proline rich C-terminal part instead of the last KH RNA binding domain. We detected 41 genes differentially spliced after NOVA2 downregulation in human neural cells. The NOVA2 variant protein shows decreased ability to bind target RNA sequences and to regulate target AS events. It also fails to complement the effect on neurite outgrowth induced by NOVA2 downregulation in vitro and to rescue alterations of retinotectal axonal pathfinding induced by loss of NOVA2 ortholog in zebrafish. Our results suggest a partial loss-of-function mechanism rather than a full heterozygous loss-of-function, although a specific contribution of the novel C-terminal extension cannot be excluded.


Subject(s)
Frameshift Mutation/genetics , Nerve Tissue Proteins/genetics , Neurodevelopmental Disorders/genetics , Neurons/physiology , RNA Splicing/genetics , RNA-Binding Proteins/genetics , Alternative Splicing/genetics , Animals , Axon Guidance/genetics , Base Sequence/genetics , Cells, Cultured , Child, Preschool , Down-Regulation/genetics , Female , Heterozygote , Humans , Intellectual Disability/genetics , Language Development Disorders/genetics , Male , Mice , Muscle Hypotonia/genetics , Neuro-Oncological Ventral Antigen , Zebrafish/genetics
4.
Hum Reprod ; 38(2): 306-314, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36524333

ABSTRACT

STUDY QUESTION: Can the analysis of a large Turkish consanguineous family via whole exome sequencing (WES) identify novel causative genetic variation responsible for nonobstructive azoospermia (NOA) characterized by arrest at primary spermatocyte stage? SUMMARY ANSWER: WES analysis revealed a homozygous nonsense variant in HORMAD1 in three affected brothers of a Turkish family. WHAT IS KNOWN ALREADY: Studying patient cohorts in small or large consanguineous families using high-throughput sequencing allows the identification of genetic causes of different pathologies, including infertility. Over the last two decades, a number of genes involved in human male infertility have been discovered, but only 14 genes have been identified as being at least moderately linked to isolated NOA or oligozoospermia in men. STUDY DESIGN, SIZE, DURATION: The study included a Turkish family comprising three brothers with NOA. Two brothers had a normal karyotype, normal hormonal levels and no Yq microdeletion. The testicular histopathology analysis revealed the complete arrest of spermatogenesis at the primary spermatocyte stage. PARTICIPANTS/MATERIALS, SETTING, METHODS: We recruited a consanguineous Turkish family where parents were first-degree cousins and had seven children; three sons who had NOA, two sons who were fertile and two daughters for whom no information was available. Saliva samples from the index patient, his two affected brothers, parents and two nonaffected brothers (seven samples in total) were collected. Prior to WES, the index patient underwent targeted genetic testing using an infertility panel, which includes 133 infertility genes. No pathogenic variations were identified. WES was then performed on the DNA of the seven family members available. Bioinformatics analysis was performed using an in-house pipeline. Detected variants were scored and ranked, and copy number variants were called and annotated.The consequences of mutation on protein expression and localization were investigated by cell transfection followed by immunofluorescence or immunoblotting. MAIN RESULTS AND THE ROLE OF CHANCE: WES revealed a homozygous nonsense variant chr1:150675797G>A; HORMAD1 (NM_032132.5): c.1021C>T, p.Gln341* in exon 13, which was confirmed in all three affected brothers. HORMAD1 encodes the HORMA domain-containing protein 1. The parents as well as the two fertile brothers were carriers of this variant. This variant may lead to the production of a truncated protein lacking the nuclear localization signal; therefore, human cells were transfected with the wild-type and mutated form, in fusion with green fluorescent protein. Immunoblotting experiments confirmed the production of a truncated HORMAD1 protein, and immunofluorescence microscopy revealed that the mutated protein displayed cytoplasmic localization while the wild type protein located to the nucleus. Altogether, our findings validate HORMAD1 as an essential genetic factor in the meiotic process in human. LIMITATIONS, REASONS FOR CAUTION: According to one scoring system used to evaluate the clinical validity of male infertility genes, this study would classify HORMAD1 as displaying limited clinical evidence of being involved in male infertility. However, such a score is the maximum possible when only one family is analyzed and the addition of one patient showing a pathogenic or likely pathogenic variant would immediately change this classification to 'moderate'. Thus, this report should prompt other researchers to screen patients with NOA for this genetic variant. WIDER IMPLICATIONS OF THE FINDINGS: Identification of new genetic factors involved in the human meiosis process will contribute to an improvement of our knowledge at the basic level, which in turn will allow the management of better care for infertile patients. Since Hormad1-/- knock-out female mice are also infertile, HORMAD1 could also be involved in human female infertility. Our findings have direct implications for the genetic counseling of patients and their family members. STUDY FUNDING/COMPETING INTEREST(S): The study was funded by Fondation Maladies Rares (High Throughput Sequencing and Rare Diseases-2018, 'GenOmics of rare diseases'). The authors declare that they have no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Azoospermia , Infertility, Male , Animals , Mice , Child , Humans , Male , Female , Azoospermia/genetics , Azoospermia/pathology , Consanguinity , Rare Diseases , Infertility, Male/genetics , Proteins/genetics , Cell Cycle Proteins/genetics
5.
Hum Mutat ; 43(9): 1299-1313, 2022 09.
Article in English | MEDLINE | ID: mdl-35607920

ABSTRACT

Alternative splicing (AS) is crucial for cell-type-specific gene transcription and plays a critical role in neuronal differentiation and synaptic plasticity. De novo frameshift variants in NOVA2, encoding a neuron-specific key splicing factor, have been recently associated with a new neurodevelopmental disorder (NDD) with hypotonia, neurological features, and brain abnormalities. We investigated eight unrelated individuals by exome sequencing (ES) and identified seven novel pathogenic NOVA2 variants, including two with a novel localization at the KH1 and KH3 domains. In addition to a severe NDD phenotype, novel clinical features included psychomotor regression, attention deficit-hyperactivity disorder (ADHD), dyspraxia, and urogenital and endocrinological manifestations. To test the effect of the variants on splicing regulation, we transfected HeLa cells with wildtype and mutant NOVA2 complementary DNA (cDNA). The novel variants NM_002516.4:c.754_756delCTGinsTT p.(Leu252Phefs*144) and c.1329dup p.(Lys444Glnfs*82) all negatively affected AS events. The distal p.(Lys444Glnfs*82) variant, causing a partial removal of the KH3 domain, had a milder functional effect leading to an intermediate phenotype. Our findings expand the molecular and phenotypic spectrum of NOVA2-related NDD, supporting the pathogenic role of AS disruption by truncating variants and suggesting that this is a heterogeneous condition with variable clinical course.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Alternative Splicing , HeLa Cells , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Muscle Hypotonia/genetics , Nerve Tissue Proteins/genetics , Neuro-Oncological Ventral Antigen , Neurodevelopmental Disorders/genetics , Phenotype , RNA-Binding Proteins/genetics
6.
Acta Neuropathol ; 144(5): 939-966, 2022 11.
Article in English | MEDLINE | ID: mdl-36121477

ABSTRACT

ER stress signaling is linked to the pathophysiological and clinical disease manifestations in amyotrophic lateral sclerosis (ALS). Here, we have investigated ER stress-induced adaptive mechanisms in C9ORF72-ALS/FTD, focusing on uncovering early endogenous neuroprotective mechanisms and the crosstalk between pathological and adaptive responses in disease onset and progression. We provide evidence for the early onset of ER stress-mediated adaptive response in C9ORF72 patient-derived motoneurons (MNs), reflected by the elevated increase in GRP75 expression. These transiently increased GRP75 levels enhance ER-mitochondrial association, boosting mitochondrial function and sustaining cellular bioenergetics during the initial stage of disease, thereby counteracting early mitochondrial deficits. In C9orf72 rodent neurons, an abrupt reduction in GRP75 expression coincided with the onset of UPR, mitochondrial dysfunction and the emergence of PolyGA aggregates, which co-localize with GRP75. Similarly, the overexpression of PolyGA in WT cortical neurons or C9ORF72 patient-derived MNs led to the sequestration of GRP75 within PolyGA inclusions, resulting in mitochondrial calcium (Ca2+) uptake impairments. Corroborating these findings, we found that PolyGA aggregate-bearing human post-mortem C9ORF72 hippocampal dentate gyrus neurons not only display reduced expression of GRP75 but also exhibit GRP75 sequestration within inclusions. Sustaining high GRP75 expression in spinal C9orf72 rodent MNs specifically prevented ER stress, normalized mitochondrial function, abrogated PolyGA accumulation in spinal MNs, and ameliorated ALS-associated behavioral phenotype. Taken together, our results are in line with the notion that neurons in C9ORF72-ALS/FTD are particularly susceptible to ER-mitochondrial dysfunction and that GRP75 serves as a critical endogenous neuroprotective factor. This neuroprotective pathway, is eventually targeted by PolyGA, leading to GRP75 sequestration, and its subsequent loss of function at the MAM, compromising mitochondrial function and promoting disease onset.


Subject(s)
Amyotrophic Lateral Sclerosis , Endoplasmic Reticulum Stress , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Calcium/metabolism , Frontotemporal Dementia/genetics , HSP70 Heat-Shock Proteins , Humans , Membrane Proteins , Motor Neurons/pathology , Polyribonucleotides
7.
EMBO J ; 35(12): 1276-97, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27103069

ABSTRACT

An intronic expansion of GGGGCC repeats within the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). Ataxin-2 with intermediate length of polyglutamine expansions (Ataxin-2 Q30x) is a genetic modifier of the disease. Here, we found that C9ORF72 forms a complex with the WDR41 and SMCR8 proteins to act as a GDP/GTP exchange factor for RAB8a and RAB39b and to thereby control autophagic flux. Depletion of C9orf72 in neurons partly impairs autophagy and leads to accumulation of aggregates of TDP-43 and P62 proteins, which are histopathological hallmarks of ALS-FTD SMCR8 is phosphorylated by TBK1 and depletion of TBK1 can be rescued by phosphomimetic mutants of SMCR8 or by constitutively active RAB39b, suggesting that TBK1, SMCR8, C9ORF72, and RAB39b belong to a common pathway regulating autophagy. While depletion of C9ORF72 only has a partial deleterious effect on neuron survival, it synergizes with Ataxin-2 Q30x toxicity to induce motor neuron dysfunction and neuronal cell death. These results indicate that partial loss of function of C9ORF72 is not deleterious by itself but synergizes with Ataxin-2 toxicity, suggesting a double-hit pathological mechanism in ALS-FTD.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Ataxin-2/metabolism , Autophagy , Frontotemporal Dementia/pathology , Motor Neurons/physiology , Peptides/metabolism , Proteins/metabolism , C9orf72 Protein , Cell Death , Humans , Motor Neurons/metabolism
8.
Hum Mol Genet ; 24(17): 4948-57, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26060190

ABSTRACT

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder affecting carriers of the fragile X-premutation, who have an expanded CGG repeat in the 5'-UTR of the FMR1 gene. FXTAS is characterized by progressive development of intention tremor, ataxia, parkinsonism and neuropsychological problems. The disease is thought to be caused by a toxic RNA gain-of-function mechanism, and the major hallmark of the disease is ubiquitin-positive intranuclear inclusions in neurons and astrocytes. We have developed a new transgenic mouse model in which we can induce expression of an expanded repeat in the brain upon doxycycline (dox) exposure (i.e. Tet-On mice). This Tet-On model makes use of the PrP-rtTA driver and allows us to study disease progression and possibilities of reversibility. In these mice, 8 weeks of dox exposure was sufficient to induce the formation of ubiquitin-positive intranuclear inclusions, which also stain positive for the RAN translation product FMRpolyG. Formation of these inclusions is reversible after stopping expression of the expanded CGG RNA at an early developmental stage. Furthermore, we observed a deficit in the compensatory eye movements of mice with inclusions, a functional phenotype that could be reduced by stopping expression of the expanded CGG RNA early in the disease development. Taken together, this study shows, for the first time, the potential of disease reversibility and suggests that early intervention might be beneficial for FXTAS patients.


Subject(s)
Ataxia/genetics , Ataxia/physiopathology , Fragile X Syndrome/genetics , Fragile X Syndrome/physiopathology , Tremor/genetics , Tremor/physiopathology , Animals , Brain/metabolism , Brain/pathology , Disease Models, Animal , Eye Movements/genetics , Gene Expression , Genes, Reporter , Humans , Intranuclear Inclusion Bodies/pathology , Mice , Mice, Transgenic , Peptides/metabolism , Protein Binding , Protein Transport , Trinucleotide Repeat Expansion , Ubiquitin/metabolism
9.
J Assist Reprod Genet ; 34(5): 683-694, 2017 May.
Article in English | MEDLINE | ID: mdl-28401488

ABSTRACT

PURPOSE: The purpose of this study was to identify mutations that cause non-syndromic male infertility using whole exome sequencing of family cases. METHODS: We recruited a consanguineous Turkish family comprising nine siblings with male triplets; two of the triplets were infertile as well as one younger infertile brother. Whole exome sequencing (WES) performed on two azoospermic brothers identified a mutation in the melanoma antigen family B4 (MAGEB4) gene which was confirmed via Sanger sequencing and then screened for on control groups and unrelated infertile subjects. The effect of the mutation on messenger RNA (mRNA) and protein levels was tested after in vitro cell transfection. Structural features of MAGEB4 were predicted throughout the conserved MAGE domain. RESULTS: The novel single-base substitution (c.1041A>T) in the X-linked MAGEB4 gene was identified as a no-stop mutation. The mutation is predicted to add 24 amino acids to the C-terminus of MAGEB4. Our functional studies were unable to detect any effect either on mRNA stability, intracellular localization of the protein, or the ability to homodimerize/heterodimerize with other MAGE proteins. We thus hypothesize that these additional amino acids may affect the proper protein interactions with MAGEB4 partners. CONCLUSION: The whole exome analysis of a consanguineous Turkish family revealed MAGEB4 as a possible new X-linked cause of inherited male infertility. This study provides the first clue to the physiological function of a MAGE protein.


Subject(s)
Antigens, Neoplasm/genetics , Azoospermia/genetics , Genes, X-Linked/genetics , Infertility, Male/genetics , Neoplasm Proteins/genetics , Oligospermia/genetics , Adult , Azoospermia/pathology , Child, Preschool , Consanguinity , Gene Frequency , Homozygote , Humans , Infertility, Male/pathology , Male , Mutation , Oligospermia/pathology , Pedigree , Polymorphism, Single Nucleotide , RNA, Messenger/genetics , Exome Sequencing
10.
EMBO J ; 29(7): 1248-61, 2010 Apr 07.
Article in English | MEDLINE | ID: mdl-20186122

ABSTRACT

Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) is a neurodegenerative disorder caused by expansion of 55-200 CGG repeats in the 5'-UTR of the FMR1 gene. FXTAS is characterized by action tremor, gait ataxia and impaired executive cognitive functioning. It has been proposed that FXTAS is caused by titration of RNA-binding proteins by the expanded CGG repeats. Sam68 is an RNA-binding protein involved in alternative splicing regulation and its ablation in mouse leads to motor coordination defects. Here, we report that mRNAs containing expanded CGG repeats form large and dynamic intranuclear RNA aggregates that recruit several RNA-binding proteins sequentially, first Sam68, then hnRNP-G and MBNL1. Importantly, Sam68 is sequestered by expanded CGG repeats and thereby loses its splicing-regulatory function. Consequently, Sam68-responsive splicing is altered in FXTAS patients. Finally, we found that regulation of Sam68 tyrosine phosphorylation modulates its localization within CGG aggregates and that tautomycin prevents both Sam68 and CGG RNA aggregate formation. Overall, these data support an RNA gain-of-function mechanism for FXTAS neuropathology, and suggest possible target routes for treatment options.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Alternative Splicing , DNA-Binding Proteins/metabolism , Fragile X Syndrome/genetics , RNA-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/analysis , Animals , Ataxia/genetics , COS Cells , Cell Nucleus/metabolism , Chlorocebus aethiops , DNA-Binding Proteins/analysis , Enzyme Inhibitors/pharmacology , Fragile X Syndrome/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Humans , Mice , Phosphorylation , Pyrans/pharmacology , RNA, Messenger/chemistry , RNA, Messenger/metabolism , RNA-Binding Proteins/analysis , Repetitive Sequences, Nucleic Acid , Spiro Compounds/pharmacology , Tyrosine/metabolism
11.
Acta Neuropathol ; 126(3): 385-99, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23836290

ABSTRACT

The recently identified GGGGCC repeat expansion in the noncoding region of C9ORF72 is the most common pathogenic mutation in patients with frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS). We generated a human neuronal model and investigated the pathological phenotypes of human neurons containing GGGGCC repeat expansions. Skin biopsies were obtained from two subjects who had >1,000 GGGGCC repeats in C9ORF72 and their respective fibroblasts were used to generate multiple induced pluripotent stem cell (iPSC) lines. After extensive characterization, two iPSC lines from each subject were selected, differentiated into postmitotic neurons, and compared with control neurons to identify disease-relevant phenotypes. Expanded GGGGCC repeats exhibit instability during reprogramming and neuronal differentiation of iPSCs. RNA foci containing GGGGCC repeats were present in some iPSCs, iPSC-derived human neurons and primary fibroblasts. The percentage of cells with foci and the number of foci per cell appeared to be determined not simply by repeat length but also by other factors. These RNA foci do not seem to sequester several major RNA-binding proteins. Moreover, repeat-associated non-ATG (RAN) translation products were detected in human neurons with GGGGCC repeat expansions and these neurons showed significantly elevated p62 levels and increased sensitivity to cellular stress induced by autophagy inhibitors. Our findings demonstrate that key neuropathological features of FTD/ALS with GGGGCC repeat expansions can be recapitulated in iPSC-derived human neurons and also suggest that compromised autophagy function may represent a novel underlying pathogenic mechanism.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , DNA Repeat Expansion/genetics , Frontotemporal Dementia/genetics , Mutation/genetics , Neurons/metabolism , Proteins/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , C9orf72 Protein , Cell Differentiation/genetics , Cell Differentiation/physiology , DNA Repeat Expansion/physiology , Frontotemporal Dementia/metabolism , Genotype , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice , Neurons/cytology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
12.
J Biol Chem ; 286(18): 16435-46, 2011 May 06.
Article in English | MEDLINE | ID: mdl-21454535

ABSTRACT

Muscleblind-like-1 (MBNL1) is a splicing regulatory factor controlling the fetal-to-adult alternative splicing transitions during vertebrate muscle development. Its capture by nuclear CUG expansions is one major cause for type 1 myotonic dystrophy (DM1). Alternative splicing produces MBNL1 isoforms that differ by the presence or absence of the exonic regions 3, 5, and 7. To understand better their respective roles and the consequences of the deregulation of their expression in DM1, here we studied the respective roles of MBNL1 alternative and constitutive exons. By combining genetics, molecular and cellular approaches, we found that (i) the exon 5 and 6 regions are both needed to control the nuclear localization of MBNL1; (ii) the exon 3 region strongly enhances the affinity of MBNL1 for its pre-mRNA target sites; (iii) the exon 3 and 6 regions are both required for the splicing regulatory activity, and this function is not enhanced by an exclusive nuclear localization of MBNL1; and finally (iv) the exon 7 region enhances MBNL1-MBNL1 dimerization properties. Consequently, the abnormally high inclusion of the exon 5 and 7 regions in DM1 is expected to enhance the potential of MBNL1 of being sequestered with nuclear CUG expansions, which provides new insight into DM1 pathophysiology.


Subject(s)
Alternative Splicing , Cell Nucleus/metabolism , Exons , Protein Multimerization , RNA-Binding Proteins/metabolism , Active Transport, Cell Nucleus/genetics , Cell Nucleus/genetics , Cell Nucleus/pathology , HeLa Cells , Humans , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Myotonic Dystrophy/pathology , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA-Binding Proteins/genetics , Trinucleotide Repeat Expansion
13.
Nucleic Acids Res ; 38(20): 7273-85, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20631008

ABSTRACT

Cystic fibrosis is a prominent genetic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Among the many disease-causing alterations are pre-mRNA splicing defects that can hamper mandatory exon inclusion. CFTR exon 9 splicing depends in part on a polymorphic UG(m)U(n) sequence at the end of intron 8, which can be bound by TDP-43, leading to partial exon 9 skipping. CELF proteins, like CUG-BP1 and ETR-3, can also bind UG repeats and regulate splicing. We show here that ETR-3, but not CUG-BP1, strongly stimulates exon 9 skipping, although both proteins bind efficiently to the same RNA motif as TDP-43 and with higher affinity. We further show that the skipping of this exon may be due to the functional antagonism between U2AF65 and ETR-3 binding onto the polymorphic U or UG stretch, respectively. Importantly, we demonstrate that the divergent domain of ETR-3 is critical for CFTR exon 9 skipping, as shown by deletion and domain-swapping experiments. We propose a model whereby several RNA-binding events account for the complex regulation of CFTR exon 9 inclusion, with strikingly distinct activities of ETR-3 and CUG-BP1, related to the structure of their divergent domain.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , RNA Splicing , RNA-Binding Proteins/metabolism , Binding Sites , Cell Line , Exons , Humans , Introns , Nuclear Proteins/metabolism , Protein Structure, Tertiary , RNA Precursors/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/chemistry , Repetitive Sequences, Nucleic Acid , Ribonucleoproteins/metabolism , Spliceosomes/metabolism , Splicing Factor U2AF
14.
Front Genet ; 13: 843014, 2022.
Article in English | MEDLINE | ID: mdl-35295941

ABSTRACT

Microsatellites are repeated DNA sequences of 3-6 nucleotides highly variable in length and sequence and that have important roles in genomes regulation and evolution. However, expansion of a subset of these microsatellites over a threshold size is responsible of more than 50 human genetic diseases. Interestingly, some of these disorders are caused by expansions of similar sequences, sizes and localizations and present striking similarities in clinical manifestations and histopathological features, which suggest a common mechanism of disease. Notably, five identical CGG repeat expansions, but located in different genes, are the causes of fragile X-associated tremor/ataxia syndrome (FXTAS), neuronal intranuclear inclusion disease (NIID), oculopharyngodistal myopathy type 1 to 3 (OPDM1-3) and oculopharyngeal myopathy with leukoencephalopathy (OPML), which are neuromuscular and neurodegenerative syndromes with overlapping symptoms and similar histopathological features, notably the presence of characteristic eosinophilic ubiquitin-positive intranuclear inclusions. In this review we summarize recent finding in neuronal intranuclear inclusion disease and FXTAS, where the causing CGG expansions were found to be embedded within small upstream ORFs (uORFs), resulting in their translation into novel proteins containing a stretch of polyglycine (polyG). Importantly, expression of these polyG proteins is toxic in animal models and is sufficient to reproduce the formation of ubiquitin-positive intranuclear inclusions. These data suggest the existence of a novel class of human genetic pathology, the polyG diseases, and question whether a similar mechanism may exist in other diseases, notably in OPDM and OPML.

15.
Free Radic Biol Med ; 165: 100-110, 2021 03.
Article in English | MEDLINE | ID: mdl-33497798

ABSTRACT

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a progressive neurodegenerative disorder caused by an expansion of 55 to 200 CGG repeats located within 5'UTR of FMR1.These CGG repeats are transcribed into RNAs, which sequester several RNA binding proteins and alter the processing of miRNAs. CGG repeats are also translated into a toxic polyglycine-containing protein, FMRpolyG, that affects mitochondrial and nuclear functions reported in cell and animal models and patient studies. Nuclear-encoded small non-coding RNAs, including miRNAs, are transported to mitochondria; however, the role of mitochondrial miRNAs in FXTAS pathogenesis is not understood. Here, we analyzed mitochondrial miRNAs from HEK293 cells expressing expanded CGG repeats and their implication in the regulation of mitochondrial functions. The analysis of next generation sequencing (NGS) data of small RNAs from HEK293 cells expressing CGG premutation showed decreased level of cellular miRNAs and an altered pattern of association of miRNAs with mitochondria (mito-miRs). Among such mito-miRs, miR-320a was highly enriched in mitoplast and RNA immunoprecipitation of Ago2 (Argonaute-2) followed by Droplet digital PCR (ddPCR)suggested that miR-320a may form a complex with Ago2 and mitotranscripts. Finally, transfection of miR-320a mimic in cells expressing CGG permutation recovers mitochondrial functions and rescues cell death. Overall, this work reveals an altered translocation of miRNAs to mitochondria and the role of miR-320a in FXTAS pathology.


Subject(s)
MicroRNAs , Tremor , Animals , Ataxia , Cell Death , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome , HEK293 Cells , Humans , MicroRNAs/genetics , Mitochondria/genetics
16.
Neuron ; 109(11): 1825-1835.e5, 2021 06 02.
Article in English | MEDLINE | ID: mdl-33887199

ABSTRACT

Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disease characterized by the presence of intranuclear inclusions of unknown origin. NIID is caused by an expansion of GGC repeats in the 5' UTR of the NOTCH2NLC (N2C) gene. We found that these repeats are embedded in a small upstream open reading frame (uORF) (uN2C), resulting in their translation into a polyglycine-containing protein, uN2CpolyG. This protein accumulates in intranuclear inclusions in cell and mouse models and in tissue samples of individuals with NIID. Furthermore, expression of uN2CpolyG in mice leads to locomotor alterations, neuronal cell loss, and premature death of the animals. These results suggest that translation of expanded GGC repeats into a novel and pathogenic polyglycine-containing protein underlies the presence of intranuclear inclusions and neurodegeneration in NIID.


Subject(s)
Neurodegenerative Diseases/genetics , Peptides/toxicity , Trinucleotide Repeat Expansion , Animals , Cell Death , Cell Nucleus/metabolism , Cell Nucleus/pathology , Cells, Cultured , HEK293 Cells , Humans , Intranuclear Inclusion Bodies/genetics , Intranuclear Inclusion Bodies/metabolism , Intranuclear Inclusion Bodies/pathology , Locomotion , Male , Mice , Mice, Inbred C57BL , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Open Reading Frames , Peptides/genetics , Peptides/metabolism
17.
Brain Commun ; 3(1): fcab007, 2021.
Article in English | MEDLINE | ID: mdl-33709078

ABSTRACT

CGG repeat expansions within the premutation range (55-200) of the FMR1 gene can lead to Fragile X-associated tremor/ataxia syndrome and Fragile X-associated neuropsychiatric disorders. These CGG repeats are translated into a toxic polyglycine-containing protein, FMRpolyG. Pathology of Fragile X-associated tremor/ataxia syndrome and Fragile X-associated neuropsychiatric disorders comprises FMRpolyG- and p62-positive intranuclear inclusions. Diagnosing a FMR1-premutation carrier remains challenging, as the clinical features overlap with other neurodegenerative diseases. Here, we describe two male cases with Fragile X-associated neuropsychiatric disorders-related symptoms and mild movement disturbances and novel pathological features that can attribute to the variable phenotype. Macroscopically, both donors did not show characteristic white matter lesions on MRI; however, vascular infarcts in cortical- and sub-cortical regions were identified. Immunohistochemistry analyses revealed a high number of FMRpolyG intranuclear inclusions throughout the brain, which were also positive for p62. Importantly, we identified a novel pathological vascular phenotype with inclusions present in pericytes and endothelial cells. Although these results need to be confirmed in more cases, we propose that these vascular lesions in the brain could contribute to the complex symptomology of FMR1-premutation carriers. Overall, our report suggests that Fragile X-associated tremor/ataxia syndrome and Fragile X-associated neuropsychiatric disorders may present diverse clinical involvements resembling other types of dementia, and in the absence of genetic testing, FMRpolyG can be used post-mortem to identify premutation carriers.

18.
Front Neurosci ; 14: 295, 2020.
Article in English | MEDLINE | ID: mdl-32317919

ABSTRACT

Fragile X-associated tremor ataxia syndrome is an untreatable neurological and neuromuscular disorder caused by unstable expansion of 55-200 CGG nucleotide repeats in 5' UTR of Fragile X intellectual disability 1 (FMR1) gene. The expansion of CGG repeats in the FMR1 mRNA elicits neuronal cell toxicity through two main pathogenic mechanisms. First, mRNA with CGG expanded repeats sequester specific RNA regulatory proteins resulting in splicing alterations and formation of ribonuclear inclusions. Second, repeat-associated non-canonical translation (RANT) of the CGG expansion produces a toxic homopolymeric protein, FMRpolyG. Very few small molecules are known to modulate these pathogenic events, limiting the therapeutic possibilities for FXTAS. Here, we found that a naturally available biologically active small molecule, Curcumin, selectively binds to CGG RNA repeats. Interestingly, Curcumin improves FXTAS associated alternative splicing defects and decreases the production and accumulation of FMRpolyG protein inclusion. Furthermore, Curcumin decreases cell cytotoxicity promptly by expression of CGG RNA in FXTAS cell models. In conclusion, our data suggest that small molecules like Curcumin and its derivatives may be explored as a potential therapeutic strategy against the debilitating repeats associated neurodegenerative disorders.

19.
Genes (Basel) ; 11(4)2020 04 01.
Article in English | MEDLINE | ID: mdl-32244758

ABSTRACT

In vitro fertilization (IVF) involves controlled ovarian hyperstimulation using hormones to produce large numbers of oocytes. The success of IVF is tightly linked to the availability of mature oocytes. In most cases, about 70% to 80% of the oocytes are mature at the time of retrieval, however, in rare instances, all of them may be immature, implying that they were not able to reach the metaphase II (MII) stage. The failure to obtain any mature oocytes, despite a well conducted ovarian stimulation in repeated cycles is a very rare cause of primary female infertility, for which the underlying suspected genetic factors are still largely unknown. In this study, we present the whole exome sequencing analysis of a consanguineous Turkish family comprising three sisters with a recurrent oocyte maturation defect. Analysis of the data reveals a homozygous splice site mutation (c.1775-3C>A) in the zona pellucida glycoprotein 1 (ZP1) gene. Minigene experiments show that the mutation causes the retention of the intron 11 sequence between exon 11 and exon 12, resulting in a frameshift and the likely production of a truncated protein.


Subject(s)
In Vitro Oocyte Maturation Techniques/methods , Mutation , Oocytes/pathology , Oogenesis/genetics , RNA Splice Sites/genetics , Zona Pellucida Glycoproteins/genetics , Adult , Female , Humans , Male , Oocytes/metabolism , Ovulation Induction , Pedigree
20.
Mol Brain ; 13(1): 52, 2020 03 30.
Article in English | MEDLINE | ID: mdl-32228644

ABSTRACT

Pathogenic variants in the gene encoding the small GTPase Ras analogue in Brain 39b (RAB39B) are associated with early-onset parkinsonism. In this study we investigated the expression and localization of RAB39B (RNA and protein) in mouse brain tissue to gain a better understanding of its normal physiological function(s) and role in disease.We developed novel resources, including monoclonal antibodies directed against RAB39B and mice with Rab39b knockout, and performed real-time PCR and western blot analysis on whole brain lysates. To determine the spatial localization of Rab39b RNA and protein, we performed in-situ hybridization and immunohistochemistry on fresh frozen and fixed brain tissue. Our results show that RAB39B is localized throughout the cortex, hippocampus and substantia nigra of mice throughout postnatal life. We found high levels of RAB39B within MAP2 positive cortical and hippocampal neurons, and TH positive dopaminergic neurons in the substantia nigra pars compacta.Our studies support and extend current knowledge of the localization of RAB39B. We validate RAB39B as a neuron-enriched protein and demonstrate that it is present throughout the mouse cortex and hippocampus. Further, we observe high levels in the substantia nigra pars compacta, the brain region most affected in Parkinson's disease pathology. The distribution of Rab39b is consistent with human disease associations with parkinsonism and cognitive impairment. We also describe and validate novel resources, including monoclonal antibodies directed against RAB39B and mice with Rab39b knockout, both of which are valuable tools for future studies of the molecular function of RAB39B.


Subject(s)
Brain/metabolism , Parkinson Disease/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Antibodies, Monoclonal/immunology , Mice, Knockout , Time Factors , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL