Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Chem Phys ; 152(17): 174111, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32384832

ABSTRACT

We present an overview of the onetep program for linear-scaling density functional theory (DFT) calculations with large basis set (plane-wave) accuracy on parallel computers. The DFT energy is computed from the density matrix, which is constructed from spatially localized orbitals we call Non-orthogonal Generalized Wannier Functions (NGWFs), expressed in terms of periodic sinc (psinc) functions. During the calculation, both the density matrix and the NGWFs are optimized with localization constraints. By taking advantage of localization, onetep is able to perform calculations including thousands of atoms with computational effort, which scales linearly with the number or atoms. The code has a large and diverse range of capabilities, explored in this paper, including different boundary conditions, various exchange-correlation functionals (with and without exact exchange), finite electronic temperature methods for metallic systems, methods for strongly correlated systems, molecular dynamics, vibrational calculations, time-dependent DFT, electronic transport, core loss spectroscopy, implicit solvation, quantum mechanical (QM)/molecular mechanical and QM-in-QM embedding, density of states calculations, distributed multipole analysis, and methods for partitioning charges and interactions between fragments. Calculations with onetep provide unique insights into large and complex systems that require an accurate atomic-level description, ranging from biomolecular to chemical, to materials, and to physical problems, as we show with a small selection of illustrative examples. onetep has always aimed to be at the cutting edge of method and software developments, and it serves as a platform for developing new methods of electronic structure simulation. We therefore conclude by describing some of the challenges and directions for its future developments and applications.

2.
J Chem Theory Comput ; 16(1): 354-365, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31765137

ABSTRACT

We demonstrate the capability of embedded mean-field theory (EMFT) within the linear-scaling density-functional-theory code ONETEP, which enables DFT-in-DFT quantum embedding calculations on systems containing thousands of atoms at a fraction of the cost of a full calculation. We perform simulations on a wide range of systems from molecules to complex nanostructures to demonstrate the performance of our implementation with respect to accuracy and efficiency. This work paves the way for the application of this class of quantum embedding method to large-scale systems that are beyond the reach of existing implementations.

SELECTION OF CITATIONS
SEARCH DETAIL