Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Curr Biol ; 12(16): 1424-8, 2002 Aug 20.
Article in English | MEDLINE | ID: mdl-12194825

ABSTRACT

The epidermis is a stratified, continually renewing epithelium dependent on a balance among cell proliferation, differentiation, and death for homeostasis. In normal epidermis, a mitotically active basal layer gives rise to terminally differentiating keratinocytes that migrate outward and are ultimately sloughed from the skin surface as enucleated squames. Although many proteins are known to function in maintaining epidermal homeostasis, the molecular coordination of these events is poorly understood. RIP4 is a novel RIP (receptor-interacting protein) family kinase with ankyrin repeats cloned from a keratinocyte cDNA library. RIP4 deficiency in mice results in perinatal lethality associated with abnormal epidermal differentiation. The phenotype of RIP4(-/-) mice in part resembles that of mice lacking IKKalpha, a component of a complex that regulates NF-kappaB. Despite the similar keratinocyte defects in RIP4- and IKKalpha-deficient mice, these kinases function in distinct pathways. RIP4 functions cell autonomously within the keratinocyte lineage. Unlike IKKalpha, RIP4-deficient skin fails to fully differentiate when grafted onto a normal host. Instead, abnormal hair follicle development and epidermal dysplasia, indicative of progression into a more pathologic state, are observed. Thus, RIP4 is a critical component of a novel pathway that controls keratinocyte differentiation.


Subject(s)
Cell Differentiation/physiology , Keratinocytes/physiology , Protein Kinases/metabolism , Proteins/metabolism , Animals , Epidermal Cells , Epidermis/growth & development , Epidermis/pathology , Epidermis/physiology , Female , Homeostasis , Keratins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mucous Membrane/pathology , Oligonucleotide Array Sequence Analysis , Phenotype , Protein Kinases/genetics , Protein Serine-Threonine Kinases , Proteins/genetics , Receptor-Interacting Protein Serine-Threonine Kinases
2.
Biochem Soc Symp ; (70): 39-52, 2003.
Article in English | MEDLINE | ID: mdl-14587281

ABSTRACT

Tumour necrosis factor alpha (TNF alpha)-converting enzyme (TACE/ADAM-17, where ADAM stands for a disintegrin and metalloproteinase) releases from the cell surface the extracellular domains of TNF and several other proteins. Previous studies have found that, while purified TACE preferentially cleaves peptides representing the processing sites in TNF and transforming growth factor alpha, the cellular enzyme nonetheless also sheds proteins with divergent cleavage sites very efficiently. More recent work, identifying the cleavage site in the p75 TNF receptor, quantifying the susceptibility of additional peptides to cleavage by TACE and identifying additional protein substrates, underlines the complexity of TACE-substrate interactions. In addition to substrate specificity, the mechanism underlying the increased rate of shedding caused by agents that activate cells remains poorly understood. Recent work in this area, utilizing a peptide substrate as a probe for cellular TACE activity, indicates that the intrinsic activity of the enzyme is somehow increased.


Subject(s)
Alanine/metabolism , Metalloendopeptidases/metabolism , Valine/metabolism , ADAM Proteins , ADAM17 Protein , Enzyme Induction , Metalloendopeptidases/biosynthesis , Metalloendopeptidases/chemistry , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL