Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Curr Protoc Mouse Biol ; 9(4): e65, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31756054

ABSTRACT

Genotyping consists of searching for a DNA sequence variation localized at a well-defined locus in the genome. It is an essential step in animal research because it allows the identification of animals that will be bred to generate and maintain a colony, euthanized to control the available space in the animal facility, or used in experiment protocols. Here we describe polymerase chain reaction (PCR) genotyping protocols for fast, sensitive, easy, and cost-effective characterization of mouse genotype. We discuss optimization of parameters to improve the reliability of each assay and propose recommendations for enhancing reproducibility and reducing the occurrence of inconclusive genotyping. All steps required for efficient genotyping are presented: tissue collection; sample verification and direct DNA lysis; establishment of a robust genotyping strategy with reliable, rapid, and cost-effective assays; and finally, transition to high-throughput automatized PCR, including mix miniaturization and automation. © 2019 The Authors. Basic Protocol 1: Tissue sampling methods and procedure Basic Protocol 2: Sample verification and DNA lysis Basic Protocol 3: Design of a genotyping strategy Basic Protocol 4: Moving to high-throughput genotyping.


Subject(s)
Genotyping Techniques/methods , High-Throughput Nucleotide Sequencing/methods , Mutation , Polymerase Chain Reaction/methods , Animals , Genotyping Techniques/instrumentation , High-Throughput Nucleotide Sequencing/instrumentation , Mice , Reproducibility of Results
2.
Curr Protoc Mouse Biol ; 1(1): 1-15, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-26068985

ABSTRACT

Conditional gene manipulations in mice are increasingly popular strategies in biomedical research. These approaches rely on the production of conditional genetically engineered mutant mouse (GEMM) lines with mutations in protein-encoding genes. These conditional GEMMs are then bred with one or several transgenic mouse lines expressing a site-specific recombinase, most often the Cre recombinase, in a tissue-specific manner. Conditional GEMMs can only be exploited if Cre transgenic mouse lines are available to generate somatic mutations, and thus the number of Cre transgenic lines has significantly increased over the last 15 years. Once produced, these transgenic lines must be validated for reliable, efficient, and specific Cre expression and Cre-mediated recombination. In this overview, the minimum level of information that is ideally required to validate a Cre-driver transgenic line is first discussed. The vagaries associated with validation procedures are considered next, and some solutions are proposed to assess the expression and activity of constitutive or inducible Cre recombinase before undertaking extensive breeding experiments and exhaustive phenotyping. Curr. Protoc. Mouse Biol. 1:1-15. © 2011 by John Wiley & Sons, Inc.

3.
Cell ; 131(2): 405-18, 2007 Oct 19.
Article in English | MEDLINE | ID: mdl-17956739

ABSTRACT

Nuclear receptors (NRs) compose a large family of transcription factors that operate at the interface between genes and environment, acting as sensors and effectors that translate endocrine and metabolic cues into well-defined gene expression programs. We report here on a systematic quantitative and anatomical expression atlas of the 49 NR genes in 104 regions of the adult mouse brain, organized in the interactive MousePat database. MousePat defines NR expression patterns to cellular resolution, a requirement for functional genomic strategies to understand the function of a highly heterogeneous and complex organ such as the brain. Using MousePat data, NR expression patterns can be clustered into anatomical and regulatory networks that delineate the role of NRs in brain functions, like the control of feeding and learning/memory. Mining the MousePat resource will improve the understanding of NR function in the brain and elucidate hierarchical networks that control behavior and whole body homeostasis.


Subject(s)
Gene Expression Profiling , Hippocampus/metabolism , Hypothalamus/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Transcription Factors/metabolism , Animals , Databases, Nucleic Acid , Feeding Behavior , In Situ Hybridization , Learning , Male , Mice , Mice, Inbred C57BL , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL