Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Neuroendocrinology ; : 1-17, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38599200

ABSTRACT

BACKGROUND: Obesity and type 2 diabetes are strongly associated pathologies, currently considered as a worldwide epidemic problem. Understanding the mechanisms that drive the development of these diseases would enable to develop new therapeutic strategies for their prevention and treatment. Particularly, the role of the brain in energy and glucose homeostasis has been studied for 2 decades. In specific, the hypothalamus contains well-identified neural networks that regulate appetite and potentially also glucose homeostasis. A new concept has thus emerged, suggesting that obesity and diabetes could be due to a dysfunction of the same, still poorly understood, neural networks. SUMMARY: The neuropeptide 26RFa (also termed QRFP) belongs to the family of RFamide regulatory peptides and has been identified as the endogenous ligand of the human G protein-coupled receptor GPR103 (QRFPR). The primary structure of 26RFa is strongly conserved during vertebrate evolution, suggesting its crucial roles in the control of vital functions. Indeed, the 26RFa/GPR103 peptidergic system is reported to be involved in the control of various neuroendocrine functions, notably the control of energy metabolism in which it plays an important role, both centrally and peripherally, since 26RFa regulates feeding behavior, thermogenesis and lipogenesis. Moreover, 26RFa is reported to control glucose homeostasis both peripherally, where it acts as an incretin, and centrally, where the 26RFa/GPR103 system relays insulin signaling in the brain to control glucose metabolism. KEY MESSAGES: This review gives a comprehensive overview of the role of the 26RFa/GPR103 system as a key player in the control of energy and glucose metabolism. In a pathophysiological context, this neuropeptidergic system represents a prime therapeutic target whose mechanisms are highly relevant to decipher.

2.
Neuroendocrinology ; : 1, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38852579

ABSTRACT

INTRODUCTION: Immunoglobulins (Ig) reactive with α-melanocyte-stimulating hormone (α-MSH), an anorexigenic neuropeptide, are present in humans and were previously associated with eating disorders. In this longitudinal study involving patients with anorexia nervosa (AN), we determined whether α-MSH in serum is bound to IgG and analyzed long-term dynamics of both α-MSH peptide and α-MSH-reactive Ig in relation to changes in BMI and gut microbiota composition. METHODS: The study included 64 adolescents with a restrictive form of AN, whose serum samples were collected at hospital admission, discharge, and during a 1-year follow-up visit and 41 healthy controls, all females. RESULTS: We found that in both study groups, approximately 40% of serum α-MSH was reversibly bound to IgG and that levels of α-MSH-reactive IgG but not of α-MSH peptide in patients with AN were low at hospital admission but recovered 1 year later. Total IgG levels were also low at admission. Moreover, BMI-standard deviation score correlated positively with α-MSH IgG in both groups studied but negatively with α-MSH peptide only in controls. Significant correlations between the abundance of specific bacterial taxa in the gut microbiota and α-MSH peptide and IgG levels were found in both study groups, but they were more frequent in controls. CONCLUSION: We conclude that IgG in the blood plays a role as an α-MSH-binding protein, whose characteristics are associated with BMI in both patients with AN and controls. Furthermore, the study suggests that low production of α-MSH-reactive IgG during the starvation phase in patients with AN may be related to altered gut microbiota composition.

SELECTION OF CITATIONS
SEARCH DETAIL