Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(21): 11328-11336, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32393620

ABSTRACT

Across the Upper Missouri River Basin, the recent drought of 2000 to 2010, known as the "turn-of-the-century drought," was likely more severe than any in the instrumental record including the Dust Bowl drought. However, until now, adequate proxy records needed to better understand this event with regard to long-term variability have been lacking. Here we examine 1,200 y of streamflow from a network of 17 new tree-ring-based reconstructions for gages across the upper Missouri basin and an independent reconstruction of warm-season regional temperature in order to place the recent drought in a long-term climate context. We find that temperature has increasingly influenced the severity of drought events by decreasing runoff efficiency in the basin since the late 20th century (1980s) onward. The occurrence of extreme heat, higher evapotranspiration, and associated low-flow conditions across the basin has increased substantially over the 20th and 21st centuries, and recent warming aligns with increasing drought severities that rival or exceed any estimated over the last 12 centuries. Future warming is anticipated to cause increasingly severe droughts by enhancing water deficits that could prove challenging for water management.

2.
Cannabis Cannabinoid Res ; 8(5): 790-801, 2023 10.
Article in English | MEDLINE | ID: mdl-36125410

ABSTRACT

Introduction: There are few vocal learning animals that are suitable for laboratory study, and so songbirds have unique utility for evaluating drug effects on behavior learned during a critical period of development. We previously found that purified botanically-derived cannabidiol (CBD, ≥98%) mitigates effects of partial ablation of zebra finch HVC, a pre-vocal motor cortical region. Here we expand prior work to determine ability of the euphorigenic cannabis constituent, Δ9-tetrahydrocannabinol (THC) to modulate CBD efficacy. Evidence suggests relative abundance of phytocannabinoids within cannabis extracts is an important determinant of activity, with CBD:THC of particular significance. As CBD-enriched extracts have become increasingly available both by prescription and over the counter, differential efficacy associated with distinct phytocannabinoid combinations and relative CBD:THC amounts is of increasing concern. Methods and Results: To evaluate THC modulation of CBD efficacy in mitigating the effects of partial ablation of zebra finch HVC, we have tested 3 mg/kg of purified botanically derived CBD (≥98%) containing 0.02, 0.08, 1, 3 and 5% THC. Results demonstrate differential efficacy on phonology and syntax, consistent with complex, hormetic dose-responses. On phonology, CBD with the lowest THC content (3% CBD + 0.02% THC) improved recovery while that with the highest THC content (3% CBD+5% THC) slowed it. In terms of syntax, all THC concentrations improved recovery time with the higher 3 mg/kg+3% THC being distinctly effective in returning behavior to pre-injury levels, and the highest 3 mg/kg CBD+5% THC for reducing the acute magnitude of syntax disruption. Differential phonology and syntax effects likely involve distinct neural circuits that control vocal learning and production. Understanding these systems-level effects will inform mechanisms underlying both phytocannabinoid action, and learning-dependent vocal recovery. Conclusions: Overall, we have found that efficacy of purified botanically derived CBD (≥98%) to influence vocal recovery varies with THC content in complex ways. This adds to evidence of differential efficacy with phytocannabinoid combinations and ratios thereof and underscores the importance of careful control over cannabis preparations used therapeutically.


Subject(s)
Cannabidiol , Cannabis , Hallucinogens , Songbirds , Animals , Cannabidiol/pharmacology , Dronabinol/pharmacology , Cannabinoid Receptor Agonists , Brain
SELECTION OF CITATIONS
SEARCH DETAIL