Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bioresour Technol ; 374: 128749, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36796732

ABSTRACT

The increasing population has raised the demand for pharmaceutical and personal care products to maintain a good health. Gemfibrozil (GEM), is extensively used as a lipid regulator and is frequently detected in wastewater treatment systems and poses deleterious health and ecological effects. Hence, the current study employing Bacillus sp. N2 reports the degradation of gemfibrozil via co-metabolism in 15 days. The study reported 86 % degradation with GEM (20 mgL-1) using sucrose (150 mgL-1) as a co-substrate; as compared to 42 % without a co-substrate. Further, time-profiling studies of metabolites revealed significant demethylation and decarboxylation reactions during degradation that leads to formation of six (M1, M2, M3, M4, M5, M6) metabolites as by-products. Based on the LC-MS analysis a potential degradation pathway for GEM by Bacillus sp. N2 was proposed. The degradation of GEM has not been reported so far and the study envisages eco-friendly approach to tackle pharmaceutical- active- compounds.


Subject(s)
Gemfibrozil , Gemfibrozil/metabolism , Mass Spectrometry , Chromatography, Liquid , Pharmaceutical Preparations
2.
Environ Pollut ; 328: 121552, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37075921

ABSTRACT

The prevalence of antibiotic traces in the aquatic matrices is a concern due to the emanation of antibiotic resistance which requires a multifaceted approach. One of the potential sources is the wastewater treatment plants with a lack of advance infrastructure leading to the dissemination of contaminants. Continuous advancements in economic globalization have facilitated the application of several conventional, advanced, and hybrid techniques for the mitigation of rising antibiotic traces in the aquatic matrices that have been thoroughly scrutinized in the current paper. Although the implementation of existing mitigation techniques is associated with several limiting factors and barriers which require further research to enhance their removal efficiency. The review further summarizes the application of the microbial processes to combat antibiotic persistence in wastewater establishing a sustainable approach. However, hybrid technologies are considered as most efficient and environmental-benign due to their higher removal efficacy, energy-efficiency, and cost-effectiveness. A brief elucidation has been provided for the mechanism responsible for lowering antibiotic concentration in wastewater through biodegradation and biotransformation. Overall, the current review presents a comprehensive approach for antibiotic mitigation using existing methods however, policies and measures should be implemented for continuous monitoring and surveillance of antibiotic persistence in aquatic matrices to reduce their potential risk to humans and the environment.


Subject(s)
Anti-Bacterial Agents , Water Pollutants, Chemical , Water Purification , Humans , Drug Resistance, Microbial , Wastewater , Water Pollutants, Chemical/analysis , Water Purification/methods
3.
Bioresour Technol ; 351: 127084, 2022 May.
Article in English | MEDLINE | ID: mdl-35358671

ABSTRACT

In this study, a dual chambered microbial fuel cell (MFC) was fabricated for the treatment of tannery wastewater with concurrent production of bio-energy. The tannery effluent acts as an anolyte and a synthetic electrolytic solution as the catholyte. Five electrochemically active bacteria from the biofilm were isolated that showed homology with Klebsiella quasipneumoniae, Klebsiella pneumoniae, Cloacibacterium normanese, Bacillus firmus and Pseudomonas reactans, using 16S rDNA analysis. The physiochemical studies of treated wastewater showcased the 88%, 74% and 94% reduction in COD, BOD and TDS level, respectively. The maximum voltage output and power density obtained using electroactive consortium in MFC was 940 mV and 7371 mW/cm3, respectively. The techno-economic feasibility of the bio-electrochemical system was studied for future bioprospecting. The present study reports a significant power generation with simultaneous effluent treatment up to a maximum of ∼85%, in a sustainable and eco-friendly manner.


Subject(s)
Bioelectric Energy Sources , Bioelectric Energy Sources/microbiology , Biofilms , Electricity , Electrodes , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL