Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Proc Natl Acad Sci U S A ; 119(14): e2122217119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35344434

ABSTRACT

SignificanceA clear mechanistic understanding of metformin's antidiabetic effects is lacking. This is because suprapharmacological concentrations of metformin have been used in most studies. Using mouse models and human primary hepatocytes, we show that metformin, at clinically relevant doses, suppresses hepatic glucose production by activating a conserved regulatory pathway encompassing let-7, TET3, and a fetal isoform of hepatocyte nuclear factor 4 alpha (HNF4α). We demonstrate that metformin no longer has potent antidiabetic actions in a liver-specific let-7 loss-of-function mouse model and that hepatic delivery of let-7 ameliorates hyperglycemia and improves glucose homeostasis. Our results thus reveal an important role of the hepatic let-7/TET3/HNF4α axis in mediating the therapeutic effects of metformin and suggest that targeting this axis may be a potential therapeutic for diabetes.


Subject(s)
Hyperglycemia , Metformin , Animals , Disease Models, Animal , Glucose/metabolism , Hepatocytes/metabolism , Hyperglycemia/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Liver/metabolism , Metformin/therapeutic use , Mice
2.
Small ; 10(13): 2625-36, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-24664643

ABSTRACT

Herein, a unique approach to dispose of human hair by pyrolizing it in a regulated environment is presented, yielding highly porous, conductive hair carbons with heteroatoms and high surface area. α-keratin in the protein network of hair serves as a precursor for the heteroatoms and carbon. The carbon framework is ingrained with heteroatoms such as nitrogen and sulfur, which otherwise are incorporated externally through energy-intensive, hazardous, chemical reactions using proper organic precursors. This judicious transformation of organic-rich waste not only addresses the disposal issue, but also generates valuable functional carbon materials from the discard. This unique synthesis strategy involving moderate activation and further graphitization enhances the electrical conductivity, while still maintaining the precious heteroatoms. The effect of temperature on the structural and functional properties is studied, and all the as-obtained carbons are applied as metal-free catalysts for the oxygen reduction reaction (ORR). Carbon graphitized at 900 °C emerges as a superior ORR electrocatalyst with excellent electrocatalytic performance, high selectivity, and long durability, demonstrating that hair carbon can be a promising alternative for costly Pt-based electrocatalysts in fuel cells. The ORR performance can be discussed in terms of heteroatom doping, surface properties, and electrical conductivity of the resulting porous hair carbon materials.


Subject(s)
Carbon/chemistry , Hair/chemistry , Humans , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Surface Properties
3.
Aging Dis ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38377020

ABSTRACT

Glutamate-mediated excitotoxicity has been extensively explored as a therapeutic target for the development of potential treatments of neurological disorders including stroke. However, the effect of glutamate on astrocytes under pathological conditions has been less studied. Using primary astrocyte culture, we determined the effect of glutamate on astrocytes against ischemic insult. Glutamate provided a cytoprotective effect and acted as an alternative substrate for ATP production in primary astrocytes against oxygen glucose deprivation reoxygenation insult, which was blocked by glutamate uptake inhibition. The cytoprotective effect of glutamate appears to be astrocyte-specific, as glutamate dose-dependently induces cytotoxic action in murine hippocampal HT-22 cell line. Interestingly, the cytoprotective effect of glutamate against glucose deprivation was short-last, as no protection was observed after 3-day glucose deprivation. We determined the metabolic phenotype of primary astrocyte cultured in glucose or glutamate. Primary astrocytes cultured in glutamate displayed a different metabolic phenotype when compared to those cultured in glucose, evidenced by higher basal and maximal oxygen consumption rate (OCR), higher ATP production and proton leak-coupled OCR, as well as lower glycolysis. Furthermore, glutamate exposure resulted in astrocyte activation, evidenced by an increase in astrocyte size and GFAP expression. Our study demonstrated that glutamate exerts a dual effect on astrocytes under ischemic condition. Glutamate provides an alternative substrate for energy metabolism in the absence of glucose, thereby protecting astrocytes against ischemic insults. On the other hand, glutamate exposure induces astrogliosis. Modulation of glutamate uptake and metabolism in astrocytes may provide novel targets for alleviating ischemic injury and improving function recovery after ischemic stroke.

4.
Transl Stroke Res ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488999

ABSTRACT

Clinical studies have identified widespread white matter degeneration in ischemic stroke patients. However, contemporary research in stroke has predominately focused on the infarct and periinfarct penumbra regions. The involvement of white matter degeneration after ischemic stroke and its contribution to post-stroke cognitive impairment and dementia (PSCID) has remained less explored in experimental models. In this study, we examined the progression of locomotor and cognitive function up to 4 months after inducing ischemic stroke by middle cerebral artery occlusion in young adult rats. Despite evident ongoing locomotor recovery, long-term cognitive and affective impairments persisted after ischemic stroke, as indicated by Morris water maze, elevated plus maze, and open field performance. At 4 months after stroke, multimodal MRI was conducted to assess white matter degeneration. T2-weighted MRI (T2WI) unveiled bilateral cerebroventricular enlargement after ischemic stroke. Fluid Attenuated Inversion Recovery MRI (FLAIR) revealed white matter hyperintensities in the corpus callosum and fornix across bilateral hemispheres. A positive association between the volume of white matter hyperintensities and total cerebroventricular volume was noted in stroke rats. Further evidence of bilateral white matter degeneration was indicated by the reduction of fractional anisotropy and quantitative anisotropy at bilateral corpus callosum in diffusion-weighted MRI (DWI) analysis. Additionally, microglia and astrocyte activation were identified in the bilateral corpus callosum after stroke. Our study suggests that experimental ischemic stroke induced by MCAO in young rat replicate long-term cognitive impairment and bihemispheric white matter degeneration observed in ischemic stroke patients. This model provides an invaluable tool for unraveling the mechanisms underlying post-stroke secondary white matter degeneration and its contribution to PSCID.

5.
ACS Omega ; 8(11): 10411-10418, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36969464

ABSTRACT

Controlling the isomeric impurity in a key raw material is always critical to achieve the corresponding pure isomer-free targeted active pharmaceutical ingredient (API) in downstream processing. Clarithromycin 9-(E)-oxime is the key raw material for the synthesis of the 9a-lactam macrolide, which is an interesting scaffold for the synthesis of several bioactive macrolides. Here demonstrated is a scalable process for the preparation of substantially pure clarithromycin 9-(E)-oxime, with less than 1.2% of the (Z)-isomer. The process does not involve a separate time-consuming purification by a crystallization operation to purge the undesired (Z)-oxime isomer. Further, the pure clarithromycin 9-(E)-oxime obtained was subjected to the Beckmann rearrangement, thereby converting it into the pure 9a-lactam scaffold. Additionally, a few other impurities were identified and controlled at each stage. The fine-tuned process was successfully up scaled to a multikilogram scale, enabling the large-scale manufacturing of potential APIs derived from this scaffold.

6.
Life (Basel) ; 13(1)2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36676133

ABSTRACT

Astrocytes play critical roles in regulating neuronal synaptogenesis, maintaining blood-brain barrier integrity, and recycling neurotransmitters. Increasing numbers of studies have suggested astrocyte heterogeneity in morphology, gene profile, and function. However, metabolic phenotype of astrocytes in different brain regions have not been explored. In this paper, we investigated the metabolic signature of cortical and cerebellar astrocytes using primary astrocyte cultures. We observed that cortical astrocytes were larger than cerebellar astrocytes, whereas cerebellar astrocytes had more and longer processes than cortical astrocytes. Using a Seahorse extracellular flux analyzer, we demonstrated that cortical astrocytes had higher mitochondrial respiration and glycolysis than cerebellar astrocytes. Cerebellar astrocytes have lower spare capacity of mitochondrial respiration and glycolysis as compared with cortical astrocytes. Consistently, cortical astrocytes have higher mitochondrial oxidation and glycolysis-derived ATP content than cerebellar astrocytes. In addition, cerebellar astrocytes have a fuel preference for glutamine and fatty acid, whereas cortical astrocytes were more dependent on glucose to meet energy demands. Our study indicated that cortical and cerebellar astrocytes display distinct metabolic phenotypes. Future studies on astrocyte metabolic heterogeneity and brain function in aging and neurodegeneration may lead to better understanding of the role of astrocyte in brain aging and neurodegenerative disorders.

7.
Transl Stroke Res ; 14(5): 740-751, 2023 10.
Article in English | MEDLINE | ID: mdl-35867329

ABSTRACT

Transient ischemic attack (TIA) presents a high risk for subsequent stroke, Alzheimer's disease (AD), and related dementia (ADRD). However, the neuropathophysiology of TIA has been rarely studied. By evaluating recurrent TIA-induced neuropathological changes, our study aimed to explore the potential mechanisms underlying the contribution of TIA to ADRD. In the current study, we established a recurrent TIA model by three times 10-min middle cerebral artery occlusion within a week in rat. Neither permanent neurological deficit nor apoptosis was observed following recurrent TIA. No increase of AD-related biomarkers was indicated after TIA, including increase of tau hyperphosphorylation and ß-site APP cleaving enzyme 1 (BACE1). Neuronal cytoskeleton modification and neuroinflammation was found at 1, 3, and 7 days after recurrent TIA, evidenced by the reduction of microtubule-associated protein 2 (MAP2), elevation of neurofilament-light chain (NFL), and increase of glial fibrillary acidic protein (GFAP)-positive astrocytes and ionized calcium binding adaptor molecule 1 (Iba1)-positive microglia at the TIA-affected cerebral cortex and basal ganglion. Similar NFL, GFAP and Iba1 alteration was found in the white matter of corpus callosum. In summary, the current study demonstrated that recurrent TIA may trigger neuronal cytoskeleton change, astrogliosis, and microgliosis without induction of cell death at the acute and subacute stage. Our study indicates that TIA-induced neuronal cytoskeleton modification and neuroinflammation may be involved in the vascular contribution to cognitive impairment and dementia.


Subject(s)
Alzheimer Disease , Ischemic Attack, Transient , Rats , Animals , Ischemic Attack, Transient/metabolism , Gliosis/etiology , Amyloid Precursor Protein Secretases , Neuroinflammatory Diseases , Aspartic Acid Endopeptidases , Cytoskeleton/metabolism , Models, Theoretical
8.
Pharm Res ; 29(1): 53-68, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21744174

ABSTRACT

PURPOSE: For nanocarrier-based targeted delivery systems, preventing phagocytosis for prolong circulation half life is a crucial task. PEGylated poly(n-butylcyano acrylate) (PBCA) NP has proven a promising approach for drug delivery, but an easy and reliable method of PEGylation of PBCA has faced a major bottleneck. METHODS: PEGylated PBCA NPs containing docetaxel (DTX) by modified anionic polymerization reaction in aqueous acidic media containing amine functional PEG were made as an single step PEGylation method. In vitro colloidal stability studies using salt aggregation method and antiopsonization property of prepared NPs using mouse macrophage cell line RAW264 were performed. In vitro performance of anticancer activity of prepared formulations was checked on MCF7 cell line. NPs were radiolabeled with 99mTc and intravenously administered to study blood clearance and biodistribution in mice model. RESULTS: These formulations very effectively prevented phagocytosis and found excellent carrier for drug delivery purpose. In vivo studies display long circulation half life of PBCA-PEG20 NP in comparison to other formulations tested. CONCLUSIONS: The PEGylated PBCA formulation can work as a novel tool for drug delivery which can prevent RES uptake and prolong circulation half life.


Subject(s)
Drug Carriers/pharmacokinetics , Enbucrilate/pharmacokinetics , Nanoparticles , Polyethylene Glycols/pharmacokinetics , Animals , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Cell Line , Cell Line, Tumor , Docetaxel , Drug Carriers/chemistry , Enbucrilate/chemistry , Female , Half-Life , Humans , Macrophages/metabolism , Mice , Phagocytosis/drug effects , Polyethylene Glycols/chemistry , Taxoids/administration & dosage , Technetium/chemistry , Tissue Distribution
9.
J Nanosci Nanotechnol ; 12(1): 356-60, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22523986

ABSTRACT

A new approach is described to produce an efficient electrode material for biofuel cells using flexible carbon cloth (FCC) and hollow core-mesoporous shell carbon (HCMSC) nanospheres as bio-anode materials. The bio-electrochemical activity of glucose oxidase (GOx) enzyme adsorbed on this bio-anode was evaluated, with the maximum anodic current density varying from 80 microA cm(-2) to 180 microA cm-2 for glucose concentrations up to 5.0 mmol L(-1) for the FCC modified electrode with HCMSCs. The open circuit cell voltage was E(0) = 380 mV, and the catalytic electro-oxidation current of glucose reached 0.1 mA cm(-2) at 0.0 V versus Ag/AgCl. This new system employing HCMSC-based FCC is promising toward novel bio-anodes for biofuel cells using glucose as a fuel.


Subject(s)
Bioelectric Energy Sources , Biofuels , Electrodes , Glucose Oxidase/chemistry , Glucose/chemistry , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Elastic Modulus , Equipment Design , Equipment Failure Analysis , Particle Size , Textiles
10.
J Cereb Blood Flow Metab ; 42(7): 1259-1271, 2022 07.
Article in English | MEDLINE | ID: mdl-35078350

ABSTRACT

The brain is highly complex with diverse structural characteristics in accordance with specific functions. Accordingly, differences in regional function, cellular compositions, and active metabolic pathways may link to differences in glucose metabolism at different brain regions. In the current study, we optimized an acute biopsy punching method and characterized region-specific glucose metabolism of rat and mouse brain by a Seahorse XFe96 analyzer. We demonstrated that 0.5 mm diameter tissue punches from 180-µm thick brain sections allow metabolic measurements of anatomically defined brain structures using Seahorse XFe96 analyzer. Our result indicated that the cerebellum displays a more quiescent phenotype of glucose metabolism than cerebral cortex, basal ganglia, and hippocampus. In addition, the cerebellum has higher AMPK activation than other brain regions evidenced by the expression of pAMPK, upstream pLKB1, and downstream pACC. Furthermore, rodent brain has relatively low mitochondrial oxidative phosphorylation efficiency with up to 30% of respiration linked to proton leak. In summary, our study discovered region-specific glucose metabolic profile and relative high proton leak coupled respiration in the brain. Our study warrants future research on spatial mapping of the brain glucose metabolism in physiological and pathological conditions and exploring the mechanisms and significance of mitochondrial uncoupling in the brain.


Subject(s)
Glucose , Smegmamorpha , Animals , Brain/metabolism , Glucose/metabolism , Metabolome , Mice , Protons , Rats , Rodentia/metabolism , Smegmamorpha/metabolism
11.
Neurol Res ; 43(7): 570-581, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33688799

ABSTRACT

BACKGROUND: The cerebellum's involvement in AD has been under-appreciated by historically labeling as a normal control in AD research. METHODS: We determined the involvement of the cerebellum in AD progression. Postmortem human and APPswe/PSEN1dE9 mice cerebellums were used to assess the cerebellar Purkinje cells (PC) by immunohistochemistry. The locomotor and spatial cognitive functions were assessed in 4- to 5-month-old APPswe/PSEN1dE9 mice. Aß plaque and APP processing were determined in APPswe/PSEN1dE9 mice at different age groups by immunohistochemistry and Western blot. RESULTS: We observed loss of cerebellar PC in mild cognitive impairment and AD patients compared with cognitively normal controls. A strong trend towards PC loss was found in AD mice as early as 5 months. Impairment of balance beam and rotorod performance, but no spatial learning and memory dysfunction was observed in AD mice at 4-5 months. Aß plaque in the cerebral cortex was evidenced in AD mice at 2 months and dramatically increased at 6 months. Less and smaller Aß plaques were observed in the cerebellum than in the cerebrum of AD mice. Similar intracellular APP staining was observed in the cerebellum and cerebrum of AD mice at 2 to 10 months. Similar expression of full-length APP and C-terminal fragments were indicated in the cerebrum and cerebellum of AD mice during aging. DISCUSSION: Our study in post-mortem human brains and transgenic AD mice provided neuropathological and functional evidence that cerebellar dysfunction may occur at the early stage of AD and likely independent of Aß plaque.


Subject(s)
Alzheimer Disease/metabolism , Brain/pathology , Plaque, Amyloid/metabolism , Purkinje Cells/pathology , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Cognition/physiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Disease Models, Animal , Humans , Mice, Transgenic , Plaque, Amyloid/pathology
12.
J Microencapsul ; 27(4): 303-13, 2010.
Article in English | MEDLINE | ID: mdl-20128747

ABSTRACT

Bleomycin sulphate-loaded porous microspheres were prepared using modified solvent evaporation method (w/o/w) using PLGA50:50 as a polymeric system. The prepared microspheres were incorporated in pluronic (F127) based thermoreversible gel to develop a depot formulation. Various process parameters as solvent evaporation temperature and formulation parameters such as surfactant concentration, volume of internal and external phase and drug-to-polymer ratio were optimized for enhancing percentage drug entrapment, percentage drug loading and desired release profile by controlling size and porosity of the microspheres. Microspheres were characterized for particle size, zeta potential, surface morphology, percentage drug loading and in vitro drug release study after incorporated in gel. The formulated microspheres were porous in nature and showed biphasic in vitro drug release profile. The microspheres incorporated in pluronic (F127) gel showed sustained release up to 1 week and may be useful for treatment of squamous cell carcinoma with better therapeutic effect.


Subject(s)
Bleomycin/chemistry , Drug Delivery Systems , Lactic Acid/chemistry , Microspheres , Polyglycolic Acid/chemistry , Water/chemistry , Animals , Antibiotics, Antineoplastic/chemistry , Calorimetry, Differential Scanning , Drug Delivery Systems/methods , Emulsions/chemistry , Gels/chemistry , Male , Microscopy, Electron, Scanning , Polylactic Acid-Polyglycolic Acid Copolymer , Porosity , Rats , Rats, Sprague-Dawley , Reference Standards , Solubility , Temperature
13.
Indian J Clin Biochem ; 25(1): 77-81, 2010 Jan.
Article in English | MEDLINE | ID: mdl-23105889

ABSTRACT

Derangement of antioxidant levels in major depressive disorder had been correlated with oxidative damage. The effect of Selective Serotonin Re-Uptake Inhibitors on endogenous antioxidant uric acid levels in major depressive disorder has never been examined. This was a prospective; open labeled, parallel, 12 weeks study, in which serum uric acid levels and Hamilton Rating Scale for Depression score were estimated in age and sex matched thirty-six healthy and forty major depressive disorder subjects before and after fluoxetine and citalopram treatment. Significant decrease in serum uric acid (P<0.0001) was observed in newly diagnosed major depressive disorder subjects when compared to healthy subjects. The trend was reversed after 6 weeks more significantly after 12 weeks of treatment with improvement in Hamilton Rating Scale for Depression score. Also, Significant and negative correlation was found between Hamilton Rating Scale for Depression score and serum uric acid level (r= -0.864, P<0.001) after 12 weeks of treatment. Treatment with fluoxetine or citalopram reverses endogenous antioxidants like uric acid and improves Hamilton Rating Scale for Depression score in major depressive disorder.

14.
Geroscience ; 42(1): 97-116, 2020 02.
Article in English | MEDLINE | ID: mdl-31897861

ABSTRACT

Metformin is the safest and the most widely prescribed first-line therapy for managing hyperglycemia due to different underlying causes, primarily type 2 diabetes mellitus. In addition to its euglycemic properties, metformin has stimulated a wave of clinical trials to investigate benefits on aging-related diseases and longevity. Such an impact on the lifespan extension would undoubtedly expand the therapeutic utility of metformin regardless of glycemic status. However, there is a scarcity of studies evaluating whether metformin has differential cognitive effects across age, sex, glycemic status, metformin dose, and duration of metformin treatment and associated pathological conditions. By scrutinizing the available literature on animal and human studies for metformin and brain function, we expect to shed light on the potential impact of metformin on cognition across age, sex, and pathological conditions. This review aims to provide readers with a broader insight of (a) how metformin differentially affects cognition and (b) why there is a need for more translational and clinical studies examining multifactorial interactions. The outcomes of such comprehensive studies will streamline precision medicine practices, avoiding "fit for all" approach, and optimizing metformin use for longevity benefit irrespective of hyperglycemia.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Animals , Cognition , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Humans , Hypoglycemic Agents/therapeutic use , Longevity , Metformin/therapeutic use
15.
Antioxidants (Basel) ; 9(6)2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32630431

ABSTRACT

This study determined whether antioxidant supplementation is a viable complement to exercise regimens in improving cognitive and motor performance in a mouse model of Alzheimer's disease risk. Starting at 12 months of age, separate groups of male and female mice expressing human Apolipoprotein E3 (GFAP-ApoE3) or E4 (GFAP-ApoE4) were fed either a control diet or a diet supplemented with vitamins E and C. The mice were further separated into a sedentary group or a group that followed a daily exercise regimen. After 8 weeks on the treatments, the mice were administered a battery of functional tests including tests to measure reflex and motor, cognitive, and affective function while remaining on their treatment. Subsequently, plasma inflammatory markers and catalase activity in brain regions were measured. Overall, the GFAP-ApoE4 mice exhibited poorer motor function and spatial learning and memory. The treatments improved balance, learning, and cognitive flexibility in the GFAP-ApoE3 mice and overall the GFAP-ApoE4 mice were not responsive. The addition of antioxidants to supplement a training regimen only provided further benefits to the active avoidance task, and there was no antagonistic interaction between the two interventions. These outcomes are indicative that there is a window of opportunity for treatment and that genotype plays an important role in response to interventions.

16.
PLoS One ; 15(6): e0234571, 2020.
Article in English | MEDLINE | ID: mdl-32525922

ABSTRACT

Metformin, an anti-diabetes drug, has been recently emerging as a potential "anti-aging" intervention based on its reported beneficial actions against aging in preclinical studies. Nonetheless, very few metformin studies using mice have determined metformin concentrations and many effects of metformin have been observed in preclinical studies using doses/concentrations that were not relevant to therapeutic levels in human. We developed a liquid chromatography-tandem mass spectrometry protocol for metformin measurement in plasma, liver, brain, kidney, and muscle of mice. Young adult male and female C57BL/6 mice were voluntarily treated with metformin of 4 mg/ml in drinking water which translated to the maximum dose of 2.5 g/day in humans. A clinically relevant steady-state plasma metformin concentrations were achieved at 7 and 30 days after treatment in male and female mice. Metformin concentrations were slightly higher in muscle than in plasma, while, ~3 and 6-fold higher in the liver and kidney than in plasma, respectively. Low metformin concentration was found in the brain at ~20% of the plasma level. Furthermore, gender difference in steady-state metformin bio-distribution was observed. Our study established steady-state metformin levels in plasma, liver, muscle, kidney, and brain of normoglycemic mice treated with a clinically relevant dose, providing insight into future metformin preclinical studies for potential clinical translation.


Subject(s)
Metformin/pharmacokinetics , Animals , Brain/metabolism , Chromatography, Liquid , Female , Kidney/metabolism , Liver/metabolism , Male , Metformin/administration & dosage , Metformin/blood , Mice , Mice, Inbred C57BL , Muscles/metabolism , Tandem Mass Spectrometry , Tissue Distribution
17.
Brain Res ; 1723: 146378, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31425677

ABSTRACT

Cholesterol sulfate (CS) is one of the most important known sterol sulfates in human plasma and it is present as a normal constituent in a variety of human tissues. In both the brain and periphery, CS serves as a substrate for the synthesis of sulfonated adrenal steroids such as pregnenolone sulfate and dehydroepiandrosterone (DHEA) sulfate and as a constituent of many biological membranes including red blood cells where it functions as a stabilizing agent. It also acts as an endogenous regulator of cholesterol synthesis. However, the role of CS in brain metabolism and neurological disorder is unclear. In the current study we investigated the neuroprotective action of CS as well as its role in brain energy metabolism. The neuroprotective effect of CS and its role on cell metabolism were determined in primary astrocyte prepared from the cortex of postnatal day 0-2 C57BL/6 pups and a hippocampal HT-22 cell line using Calcein AM and MTT cell viability assay, flow cytometry, Seahorse extracellular flux analysis, and metabolism assay kits. We found that CS attenuates glutamate and rotenone induced cell death in HT-22 cells, decrease glutamate induced mitochondria membrane potential collapse, and reactive oxygen species production. Additionally, CS activates the Akt/Bcl2 pathway. We observed that CS impacts astrocyte metabolism by increasing mitochondrial phosphorylation, ATP, and glycogen contents. Our study demonstrated that CS modulates brain energy metabolism and its neuroprotective effects might be due to the activation of Akt signaling or its ability to decrease reactive oxygen species production.


Subject(s)
Astrocytes/metabolism , Cholesterol Esters/metabolism , Oxidative Stress/drug effects , Animals , Animals, Newborn , Apoptosis/drug effects , Astrocytes/drug effects , Cell Death/drug effects , Cell Line , Cell Survival/drug effects , Cholesterol Esters/pharmacology , Energy Metabolism/drug effects , Glutamic Acid/metabolism , Humans , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Pregnenolone/metabolism , Primary Cell Culture , Reactive Oxygen Species/metabolism
18.
J Neurosci Methods ; 320: 50-63, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30904500

ABSTRACT

BACKGROUND: Primary astrocyte cultures have been used for decades to study astrocyte functions in health and disease. The current primary astrocyte cultures are mostly maintained in serum-containing medium which produces astrocytes with a reactive phenotype as compared to in vivo quiescent astrocytes. The aim of this study was to establish a serum-free astrocyte culture medium that maintains primary astrocytes in a quiescent state. NEW METHOD: Serum free astrocyte base medium (ABM) supplemented with basic fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF) (ABM-FGF2-EGF) or serum supplemented DMEM (MD-10%FBS) was used to culture primary astrocytes isolated from cerebral cortex of postnatal day 1 C57BL/6 mice. RESULTS: Compared to astrocytes cultured in MD-10%FBS medium, astrocytes in ABM-FGF2-EGF had higher process bearing morphologies similar to in vivo astrocytes. Western blot, immunostaining, quantitative polymerase chain reaction and metabolic assays revealed that astrocytes maintained in ABM-FGF2-EGF had enhanced glycolytic metabolism, higher glycogen content, lower GFAP expression, increased glutamine synthase, and glutamate transporter-1 mRNA levels as compared to astrocytes cultured in MD-10% FBS medium. COMPARISON TO EXISTING METHODS: These observations suggest that astrocytes cultured in ABM-FGF2-EGF media compared to the usual FBS media promote quiescent and biosynthetic phenotype similar to in vivo astrocytes. CONCLUSION: This media provides a novel method for studying astrocytes functions in vitro under physiological and pathological conditions.


Subject(s)
Astrocytes , Epidermal Growth Factor , Fibroblast Growth Factors , Neurosciences/methods , Primary Cell Culture/methods , Animals , Cattle , Cells, Cultured , Fetal Blood
19.
Aging Dis ; 10(5): 949-963, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31595194

ABSTRACT

Metformin is currently the most effective treatment for type-2 diabetes. The beneficial actions of metformin have been found even beyond diabetes management and it has been considered as one of the most promising drugs that could potentially slow down aging. Surprisingly, the effect of metformin on brain function and metabolism has been less explored given that brain almost exclusively uses glucose as substrate for energy metabolism. We determined the effect of metformin on locomotor and cognitive function in normoglycemic mice. Metformin enhanced locomotor and balance performance, while induced anxiolytic effect and impaired cognitive function upon chronic treatment. We conducted in vitro assays and metabolomics analysis in mice to evaluate metformin's action on the brain metabolism. Metformin decreased ATP level and activated AMPK pathway in mouse hippocampus. Metformin inhibited oxidative phosphorylation and elevated glycolysis by inhibiting mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH) in vitro at therapeutic doses. In summary, our study demonstrated that chronic metformin treatment affects brain bioenergetics with compound effects on locomotor and cognitive brain function in non-diabetic mice.

20.
Exp Gerontol ; 94: 69-72, 2017 08.
Article in English | MEDLINE | ID: mdl-27939444

ABSTRACT

Age-related declines in motor and cognitive function have been associated with increases in oxidative stress. Accordingly, interventions capable of reducing the oxidative burden would be capable of preventing or reducing functional declines occurring during aging. Popular interventions such as antioxidant intake and moderate exercise are often recommended to attain healthy aging and have the capacity to alter redox burden. This review is intended to summarize the outcomes of antioxidant supplementation (more specifically of vitamins C and E) and exercise training on motor and cognitive declines during aging, and on measures of oxidative stress. Additionally, we will address whether co-implementation of these two types of interventions can potentially further their individual benefits. Together, these studies highlight the importance of using translationally-relevant parameters for interventions and to study their combined outcomes on healthy brain aging.


Subject(s)
Aging/drug effects , Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Brain/drug effects , Exercise , Oxidative Stress/drug effects , Vitamin E/pharmacology , Age Factors , Aging/metabolism , Aging/pathology , Aging/psychology , Animals , Brain/metabolism , Brain/pathology , Brain/physiopathology , Cognitive Aging , Healthy Aging , Humans
SELECTION OF CITATIONS
SEARCH DETAIL