Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Biol Chem ; 300(6): 107383, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38762182

ABSTRACT

Disulfide bond formation has a central role in protein folding of both eukaryotes and prokaryotes. In bacteria, disulfide bonds are catalyzed by DsbA and DsbB/VKOR enzymes. First, DsbA, a periplasmic disulfide oxidoreductase, introduces disulfide bonds into substrate proteins. Then, the membrane enzyme, either DsbB or VKOR, regenerate DsbA's activity by the formation of de novo disulfide bonds which reduce quinone. We have previously performed a high-throughput chemical screen and identified a family of warfarin analogs that target either bacterial DsbB or VKOR. In this work, we expressed functional human VKORc1 in Escherichia coli and performed a structure-activity-relationship analysis to study drug selectivity between bacterial and mammalian enzymes. We found that human VKORc1 can function in E. coli by removing two positive residues, allowing the search for novel anticoagulants using bacteria. We also found one warfarin analog capable of inhibiting both bacterial DsbB and VKOR and a second one antagonized only the mammalian enzymes when expressed in E. coli. The difference in the warfarin structure suggests that substituents at positions three and six in the coumarin ring can provide selectivity between the bacterial and mammalian enzymes. Finally, we identified the two amino acid residues responsible for drug binding. One of these is also essential for de novo disulfide bond formation in both DsbB and VKOR enzymes. Our studies highlight a conserved role of this residue in de novo disulfide-generating enzymes and enable the design of novel anticoagulants or antibacterials using coumarin as a scaffold.


Subject(s)
Bacterial Proteins , Escherichia coli Proteins , Escherichia coli , Vitamin K Epoxide Reductases , Warfarin , Warfarin/metabolism , Warfarin/chemistry , Vitamin K Epoxide Reductases/metabolism , Vitamin K Epoxide Reductases/chemistry , Vitamin K Epoxide Reductases/genetics , Humans , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli/enzymology , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Disulfides/chemistry , Disulfides/metabolism , Coumarins/metabolism , Coumarins/chemistry , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/chemistry , Protein Disulfide-Isomerases/genetics , Anticoagulants/chemistry , Anticoagulants/metabolism , Benzoquinones/metabolism , Benzoquinones/chemistry , Structure-Activity Relationship , Protein Binding , Membrane Proteins
SELECTION OF CITATIONS
SEARCH DETAIL