Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Pulm Pharmacol Ther ; 86: 102312, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906321

ABSTRACT

Acute lung injury (ALI) frequently occurs after video-assisted thoracoscopic surgery (VATS). Ferroptosis is implicated in several lung diseases. Therefore, the disparate effects and underlying mechanisms of the two commonly used anesthetics (sevoflurane (Sev) and propofol) on VATS-induced ALI need to be clarified. In the present study, enrolled patients were randomly allocated to receive Sev (group S) or propofol anesthesia (group P). Intraoperative oxygenation, morphology of the lung tissue, expression of ZO-1, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), superoxide dismutase (SOD), glutathione (GSH), Fe2+, glutathione peroxidase 4 (GPX4), and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway in the lung tissue as well as the expression of TNF-α and IL-6 in plasma were measured. Postoperative complications were recorded. Of the 85 initially screened patients scheduled for VATS, 62 were enrolled in either group S (n = 32) or P (n = 30). Compared with propofol, Sev substantially (1) improved intraoperative oxygenation; (2) relieved histopathological lung injury; (3) increased ZO-1 protein expression; (4) decreased the levels of TNF-α and IL-6 in both the lung tissue and plasma; (5) increased the contents of GSH and SOD but decreased Fe2+ concentration; (6) upregulated the protein expression of p-AKT, Nrf2, HO-1, and GPX4. No significant differences in the occurrence of postoperative outcomes were observed between both groups. In summary, Sev treatment, in comparison to propofol anesthesia, may suppress local lung and systemic inflammatory responses by activating the PI3K/Akt/Nrf2/HO-1 pathway and inhibiting ferroptosis. This cascade of effects contributes to the maintenance of pulmonary epithelial barrier permeability, alleviation of pulmonary injury, and enhancement of intraoperative oxygenation in patients undergoing VATS.

2.
Bioorg Chem ; 142: 106952, 2024 01.
Article in English | MEDLINE | ID: mdl-37952486

ABSTRACT

PARP1 is a multifaceted component of DNA repair and chromatin remodeling, making it an effective therapeutic target for cancer therapy. The recently reported proteolytic targeting chimera (PROTAC) could effectively degrade PARP1 through the ubiquitin-proteasome pathway, expanding the therapeutic application of PARP1 blocking. In this study, a series of nitrogen heterocyclic PROTACs were designed and synthesized through ternary complex simulation analysis based on our previous work. Our efforts have resulted in a potent PARP1 degrader D6 (DC50 = 25.23 nM) with high selectivity due to nitrogen heterocyclic linker generating multiple interactions with the PARP1-CRBN PPI surface, specifically. Moreover, D6 exhibited strong cytotoxicity to triple negative breast cancer cell line MDA-MB-231 (IC50 = 1.04 µM). And the proteomic results showed that the antitumor mechanism of D6 was found that intensifies DNA damage by intercepting the CDC25C-CDK1 axis to halt cell cycle transition in triple-negative breast cancer cells. Furthermore, in vivo study, D6 showed a promising PK property with moderate oral absorption activity. And D6 could effectively inhibit tumor growth (TGI rate = 71.4 % at 40 mg/kg) without other signs of toxicity in MDA-MB-321 tumor-bearing mice. In summary, we have identified an original scaffold and potent PARP1 PROTAC that provided a novel intervention strategy for the treatment of triple-negative breast cancer.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Mice , Animals , Triple Negative Breast Neoplasms/pathology , Proteomics , Cell Proliferation , Cell Cycle Checkpoints , Nitrogen , Cell Line, Tumor , cdc25 Phosphatases , Poly (ADP-Ribose) Polymerase-1 , CDC2 Protein Kinase
3.
Acta Pharmacol Sin ; 45(8): 1673-1685, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38641746

ABSTRACT

Acute kidney injury (AKI) is defined as sudden loss of renal function characterized by increased serum creatinine levels and reduced urinary output with a duration of 7 days. Ferroptosis, an iron-dependent regulated necrotic pathway, has been implicated in the progression of AKI, while ferrostatin-1 (Fer-1), a selective inhibitor of ferroptosis, inhibited renal damage, oxidative stress and tubular cell death in AKI mouse models. However, the clinical translation of Fer-1 is limited due to its lack of efficacy and metabolic instability. In this study we designed and synthesized four Fer-1 analogs (Cpd-A1, Cpd-B1, Cpd-B2, Cpd-B3) with superior plasma stability, and evaluated their therapeutic potential in the treatment of AKI. Compared with Fer-1, all the four analogs displayed a higher distribution in mouse renal tissue in a pharmacokinetic assay and a more effective ferroptosis inhibition in erastin-treated mouse tubular epithelial cells (mTECs) with Cpd-A1 (N-methyl-substituted-tetrazole-Fer-1 analog) being the most efficacious one. In hypoxia/reoxygenation (H/R)- or LPS-treated mTECs, treatment with Cpd-A1 (0.25 µM) effectively attenuated cell damage, reduced inflammatory responses, and inhibited ferroptosis. In ischemia/reperfusion (I/R)- or cecal ligation and puncture (CLP)-induced AKI mouse models, pre-injection of Cpd-A1 (1.25, 2.5, 5 mg·kg-1·d-1, i.p.) dose-dependently improved kidney function, mitigated renal tubular injury, and abrogated inflammation. We conclude that Cpd-A1 may serve as a promising therapeutic agent for the treatment of AKI.


Subject(s)
Acute Kidney Injury , Ferroptosis , Mice, Inbred C57BL , Phenylenediamines , Animals , Ferroptosis/drug effects , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Mice , Male , Phenylenediamines/pharmacology , Phenylenediamines/therapeutic use , Cyclohexylamines/pharmacology , Cyclohexylamines/therapeutic use , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism
4.
Food Chem X ; 21: 101107, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38292684

ABSTRACT

Grapefruit (Citrus × paradisi Macf.) peel, a by-product of the citrus-processing industry, possesses an important economic value due to the richness of bioactive compounds. In this study, boron-linked covalent organic frameworks integrated with molecularly imprinted polymers (CMIPs) were developed via a facile one-pot bulk polymerization approach for the selective extraction of naringenin from grapefruit peel extract. The obtained CMIPs possessed a three-dimensional network structure with uniform pore size distribution, large surface areas (476 m2/g), and high crystallinity. Benefiting from the hybrid functional monomer APTES-MAA, the acylamino group can coordinate with the boronate ligands of the boroxine-based framework to form B-N bands, facilitating the integration of imprinted cavities with the aromatic skeleton. The composite materials exhibited a high adsorption capacity of 153.65 mg/g, and a short adsorption equilibrium time of 30 min for naringenin, together with favorable selectivity towards other flavonoid analogues. Additionally, the CMIPs captured the template molecules through π-π* interaction and hydrogen bonding, as verified by FT-IR and XPS. Furthermore, they had good performance when employed to enrich naringenin in grapefruit peels extract compared with the common adsorbent materials including AB-8, D101, cationic exchange resin, and active carbon. This research highlights the potential of CMIPs composite materials as a promising alternative adsorbent for naringenin extraction from grapefruit peel.

5.
Eur J Med Chem ; 267: 116206, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38350360

ABSTRACT

Hematopoietic progenitor kinase 1 (HPK1), a serine/threonine kinase in the MAP4K family, is expressed predominantly in immune cells, and has been identified as a negative regulator of immune signaling. Accumulating evidences demonstrated that loss of HPK1 kinase function effectively enhances anti-tumor responses. In this study, we disclose the medicinal chemistry campaigns to discovery potent, selective, and orally active HPK1 inhibitors, starting from our previous work based on rigidification strategy. Systematically structure-activity relationship (SAR) exploration led to the identification of F03 (HMC-B17). The representative compound, HMC-B17, showed the potent HPK1 inhibition with an IC50 value of 1.39 nM and favorable selectivity against TCR-related kinases. In addition, the HMC-B17 effectively enhanced the IL-2 secretion in Jurkat cells (EC50 = 11.56 nM). Strikingly, immune-reverse effects and improved immune response in vivo were observed after HMC-B17 treatment. Furthermore, HMC-B17 combined with anti-PD-L1 antibody demonstrated a synergistic antitumor efficacy with TGI% value of 71.24 % in CT26 model. Collectively, our findings suggest that HMC-B17 could be a valuable lead compound to develop a safe and potent HPK1 inhibitor for further cancer immunotherapy.


Subject(s)
Signal Transduction , Humans , Jurkat Cells
6.
Talanta ; 270: 125571, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38154354

ABSTRACT

Acute myocardial infarction (AMI) patients are at an elevated risk for life-threatening myocardial ischemia/reperfusion injury. Early-stage nonradioactive and noninvasive diagnosis of AMI is imperative for the subsequent disease treatment, yet it presents substantial challenges. After AMI, the myocardium typically exhibits elevated levels of peroxynitrite (ONOO-), constituting a distinct microenvironmental feature. In this context, the near-infrared imaging probe (BBEB) is employed to precisely delineate the boundaries of AMI lesions with a high level of sensitivity and specificity by monitoring endogenous ONOO-. This probe allows for the early detection of myocardial damage at cellular and animal levels, providing exceptional temporal and spatial resolution. Notably, BBEB enables visualization of ONOO- level alterations during AMI treatment incorporating antioxidant drugs. Overall, BBEB can rapidly and accurately visualize myocardial injury, particularly in the early stages, and can further facilitate antioxidant drug screening.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Animals , Humans , Antioxidants/pharmacology , Myocardial Infarction/diagnostic imaging , Myocardium , Diagnostic Imaging , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Peroxynitrous Acid , Fluorescent Dyes
7.
Adv Sci (Weinh) ; 11(13): e2306309, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38269648

ABSTRACT

Bystander-killing payloads can significantly overcome the tumor heterogeneity issue and enhance the clinical potential of antibody-drug conjugates (ADC), but the rational design and identification of effective bystander warheads constrain the broader implementation of this strategy. Here, graph attention networks (GAT) are constructed for a rational bystander killing scoring model and ADC construction workflow for the first time. To generate efficient bystander-killing payloads, this model is utilized for score-directed exatecan derivatives design. Among them, Ed9, the most potent payload with satisfactory permeability and bioactivity, is further used to construct ADC. Through linker optimization and conjugation, novel ADCs are constructed that perform excellent anti-tumor efficacy and bystander-killing effect in vivo and in vitro. The optimal conjugate T-VEd9 exhibited therapeutic efficacy superior to DS-8201 against heterogeneous tumors. These results demonstrate that the effective scoring approach can pave the way for the discovery of novel ADC with promising bystander payloads to combat tumor heterogeneity.


Subject(s)
Immunoconjugates , Cell Line, Tumor , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use
8.
Eur J Med Chem ; 275: 116542, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38875807

ABSTRACT

The potential for secondary stroke prevention, which can significantly reduce the risk of recurrent strokes by almost 90%, underscores its critical importance. N-butylphthalide (NBP) has emerged as a promising treatment for acute cerebral ischemia, yet its efficacy for secondary stroke prevention is hindered by inadequate pharmacokinetic properties. This study, driven by a comprehensive structural analysis, the iterative process of structure optimization culminated in the identification of compound B4, which demonstrated exceptional neuroprotective efficacy and remarkable oral exposure and oral bioavailability. Notably, in an in vivo transient middle cerebral artery occlusion (tMCAO) model, B4 substantially attenuated infarct volumes, surpassing the effectiveness of NBP. While oral treatment with B4 exhibited stronger prevention potency than NBP in photothrombotic (PT) model. In summary, compound B4, with its impressive oral bioavailability and potent neuroprotective effects, offers promise for both acute ischemic stroke treatment and secondary stroke prevention.


Subject(s)
Ischemic Stroke , Neuroprotective Agents , Secondary Prevention , Tetrazolium Salts , Animals , Humans , Male , Mice , Rats , Administration, Oral , Biological Availability , Dose-Response Relationship, Drug , Drug Discovery , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/prevention & control , Ischemic Stroke/prevention & control , Ischemic Stroke/drug therapy , Mice, Inbred C57BL , Molecular Structure , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Structure-Activity Relationship , Tetrazolium Salts/administration & dosage , Tetrazolium Salts/pharmacokinetics , Tetrazolium Salts/pharmacology , Rats, Sprague-Dawley , Female
9.
Eur J Med Chem ; 275: 116539, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38878515

ABSTRACT

AML is an aggressive malignancy of immature myeloid progenitor cells. Discovering effective treatments for AML through cell differentiation and anti-proliferation remains a significant challenge. Building on previous studies on CDK2 PROTACs with differentiation-inducing properties, this research aims to enhance CDKs degradation through structural optimization to facilitate the differentiation and inhibit the proliferation of AML cells. Compound C3, featuring a 4-methylpiperidine ring linker, effectively degraded CDK2 with a DC50 value of 18.73 ± 10.78 nM, and stimulated 72.77 ± 3.51 % cell differentiation at 6.25 nM in HL-60 cells. Moreover, C3 exhibited potent anti-proliferative activity against various AML cell types. Degradation selectivity analysis indicated that C3 could be endowed with efficient degradation of CDK2/4/6/9 and FLT3, especially FLT3-ITD in MV4-11 cells. These findings propose that C3 combined targeting CDK2/4/6/9 and FLT3 with enhanced differentiation and proliferation inhibition, which holds promise as a potential treatment for AML.


Subject(s)
Antineoplastic Agents , Cyclin-Dependent Kinases , Drug Discovery , Leukemia, Myeloid, Acute , Protein Kinase Inhibitors , Proteolysis Targeting Chimera , Proteolysis , fms-Like Tyrosine Kinase 3 , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/metabolism , Leukemia, Myeloid, Acute/drug therapy , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Structure-Activity Relationship , Proteolysis Targeting Chimera/chemistry , Proteolysis Targeting Chimera/pharmacology , Proteolysis Targeting Chimera/therapeutic use
10.
Eur J Med Chem ; 272: 116468, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38718626

ABSTRACT

High expression of ubiquitin-specific protease 10 (USP10) promote the proliferation of hepatocellular carcinoma (HCC), thus the development of USP10 inhibitors holds promise as a novel therapeutic approach for HCC treatment. However, the development of selective USP10 inhibitor is still limited. In this study, we developed a novel USP10 inhibitor for investigating the feasibility of targeting USP10 for the treatment of HCC. Due to high USP10 inhibition potency and prominent selectivity, compound D1 bearing quinolin-4(1H)-one scaffold was identified as a lead compound. Subsequent research revealed that D1 significantly inhibits cell proliferation and clone formation in HCC cells. Mechanistic insights indicated that D1 targets the ubiquitin pathway, facilitating the degradation of YAP (Yes-associated protein), thereby triggering the downregulation of p53 and its downstream protein p21. Ultimately, this cascade leads to S-phase arrest in HCC cells, followed by cell apoptosis. Collectively, our findings highlight D1 as a promising starting point for USP10-positive HCC treatment, underscoring its potential as a vital tool for unraveling the functional intricacies of USP10.


Subject(s)
Adaptor Proteins, Signal Transducing , Antineoplastic Agents , Carcinoma, Hepatocellular , Cell Proliferation , Drug Discovery , Liver Neoplasms , Transcription Factors , Ubiquitin Thiolesterase , YAP-Signaling Proteins , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Structure-Activity Relationship , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , YAP-Signaling Proteins/metabolism , Molecular Structure , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Apoptosis/drug effects , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/chemical synthesis , Cell Line, Tumor
11.
J Med Chem ; 67(3): 1914-1931, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38232131

ABSTRACT

Decaprenylphosphoryl-ß-d-ribose oxidase (DprE1) is a promising target for treating tuberculosis (TB). Currently, most novel DprE1 inhibitors are discovered through high-throughput screening, while computer-aided drug design (CADD) strategies are expected to promote the discovery process. In this study, with the aid of structure-based virtual screening and computationally guided design, a series of novel scaffold N-(1-(6-oxo-1,6-dihydropyrimidine)-pyrazole) acetamide derivatives with significant antimycobacterial activities were identified. Among them, compounds LK-60 and LK-75 are capable of effectively suppressing the proliferation of Mtb with MICMtb values of 0.78-1.56 µM, comparable with isoniazid and much superior to the phase II candidate TBA-7371 (MICMtb = 12.5 µM). LK-60 is also the most active DprE1 inhibitor derived from CADD so far. Further studies confirmed their high affinity to DprE1, good safety profiles to gut microbiota and human cells, and synergy effects with either rifampicin or ethambutol, indicating their broad potential for clinical applications.


Subject(s)
Mycobacterium tuberculosis , Humans , Antitubercular Agents/pharmacology , Alcohol Oxidoreductases , Pyrazoles/pharmacology , Acetamides/pharmacology , Bacterial Proteins
12.
J Med Chem ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39084610

ABSTRACT

HPK1, a well-known negative regulator of T cell receptors, can cause T cell dysfunction when abnormally activated. In this study, a PROTAC C3 was designed and synthesized by optimizing the physicochemical properties of the warhead, linker, and CRBN ligand. C3 demonstrated significant HPK1 degradation with a DC50 of 21.26 nM, excellent oral absorption with a Cmax of 10,899.92 ng/mL, and a bioavailability (F %) of 81.7%. C3 also showed degradation selectivity and potent immune activation effects. Proteomic and WB analyses revealed that immune-activating effect of C3 is attributed to the inhibition of SLP76 and NF-κB signaling pathways, as well as the enhancement of MAPK signaling pathway transduction. In vivo efficacy study demonstrated that oral administration of C3 in combination with anti-PDL1 antibody significantly inhibited tumor growth (tumor growth inhibition = 65.58%). These findings suggest that C3, a novel HPK1 PROTAC, holds promise as a therapeutic agent for tumor immunotherapy.

13.
J Med Chem ; 67(13): 11326-11353, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38913763

ABSTRACT

BRD9 is a pivotal epigenetic factor involved in cancers and inflammatory diseases. Still, the limited selectivity and poor phenotypic activity of targeted agents make it an atypically undruggable target. PROTAC offers an alternative strategy for overcoming the issue. In this study, we explored diverse E3 ligase ligands for the contribution of BRD9 PROTAC degradation. Through molecular docking, binding affinity analysis, and structure-activity relationship study, we identified a highly potent PROTAC E5, with excellent BRD9 degradation (DC50 = 16 pM) and antiproliferation in MV4-11 cells (IC50 = 0.27 nM) and OCI-LY10 cells (IC50 = 1.04 nM). E5 can selectively degrade BRD9 and induce cell cycle arrest and apoptosis. Moreover, the therapeutic efficacy of E5 was confirmed in xenograft tumor models, accompanied by further RNA-seq analysis. Therefore, these results may pave the way and provide the reference for the discovery and investigation of highly effective PROTAC degraders.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Molecular Docking Simulation , Ubiquitin-Protein Ligases , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Cell Proliferation/drug effects , Ubiquitin-Protein Ligases/metabolism , Cell Line, Tumor , Mice , Drug Discovery , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/pathology , Hematologic Neoplasms/metabolism , Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Apoptosis/drug effects , Proteolysis/drug effects , Mice, Nude , Mice, Inbred BALB C , Xenograft Model Antitumor Assays , Drug Screening Assays, Antitumor , Bromodomain Containing Proteins
14.
J Med Chem ; 67(14): 11712-11731, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38996382

ABSTRACT

Ferroptosis is a promising therapeutic target for injury-related diseases, yet diversity in ferroptosis inhibitors remains limited. In this study, initial structure optimization led us to focus on the bond dissociation enthalpy (BDE) of the N-H bond and the residency time of radical scavengers in a phospholipid bilayer, which may play an important role in ferroptosis inhibition potency. This led to the discovery of compound D1, exhibiting potent ferroptosis inhibition, high radical scavenging, and moderate membrane permeability. D1 demonstrated significant neuroprotection in an oxygen glucose deprivation/reoxygenation (OGD/R) model and reduced infarct volume in an in vivo stroke model upon intravenous treatment. Further screening based on this strategy identified NecroX-7 and Eriodictyol-7-O-glucoside as novel ferroptosis inhibitors with highly polar structural characteristics. This approach bridges the gap between free radical scavengers and ferroptosis inhibitors, providing a foundation for research and insights into novel ferroptosis inhibitor development.


Subject(s)
Ferroptosis , Free Radical Scavengers , Ischemic Stroke , Ferroptosis/drug effects , Animals , Free Radical Scavengers/pharmacology , Free Radical Scavengers/therapeutic use , Free Radical Scavengers/chemistry , Free Radical Scavengers/chemical synthesis , Ischemic Stroke/drug therapy , Humans , Mice , Structure-Activity Relationship , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/chemical synthesis , Drug Discovery , Male , Molecular Structure , Mice, Inbred C57BL
15.
Adv Mater ; : e2405275, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38897213

ABSTRACT

The development of minimally invasive surgery has greatly advanced precision tumor surgery, but sometime suffers from restricted visualization of the surgical field, especially during the removal of abdominal tumors. A 3-D inspection of tumors could be achieved by intravenously injecting tumor-selective fluorescent probes, whereas most of which are unable to instantly distinguish tumors via in situ spraying, which is urgently needed in the process of surgery in a convenient manner. In this study, this work has designed an injectable and sprayable fluorescent nanoprobe, termed Poly-g-BAT, to realize rapid tumor imaging in freshly dissected human colorectal tumors and animal models. Mechanistically, the incorporation of γ-glutamyl group facilitates the rapid internalization of Poly-g-BAT, and these internalized nanoprobes can be subsequently activated by intracellular NAD(P)H: quinone oxidoreductase-1 to release near-infrared fluorophores. As a result, Poly-g-BAT can achieve a superior tumor-to-normal ratio (TNR) up to 12.3 and enable a fast visualization (3 min after in situ spraying) of tumor boundaries in the xenograft tumor models, Apcmin/+ mice models and fresh human tumor tissues. In addition, Poly-g-BAT is capable of identifying minimal premalignant lesions via intravenous injection.

SELECTION OF CITATIONS
SEARCH DETAIL