Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Nature ; 612(7941): 739-747, 2022 12.
Article in English | MEDLINE | ID: mdl-36517598

ABSTRACT

Exercise exerts a wide range of beneficial effects for healthy physiology1. However, the mechanisms regulating an individual's motivation to engage in physical activity remain incompletely understood. An important factor stimulating the engagement in both competitive and recreational exercise is the motivating pleasure derived from prolonged physical activity, which is triggered by exercise-induced neurochemical changes in the brain. Here, we report on the discovery of a gut-brain connection in mice that enhances exercise performance by augmenting dopamine signalling during physical activity. We find that microbiome-dependent production of endocannabinoid metabolites in the gut stimulates the activity of TRPV1-expressing sensory neurons and thereby elevates dopamine levels in the ventral striatum during exercise. Stimulation of this pathway improves running performance, whereas microbiome depletion, peripheral endocannabinoid receptor inhibition, ablation of spinal afferent neurons or dopamine blockade abrogate exercise capacity. These findings indicate that the rewarding properties of exercise are influenced by gut-derived interoceptive circuits and provide a microbiome-dependent explanation for interindividual variability in exercise performance. Our study also suggests that interoceptomimetic molecules that stimulate the transmission of gut-derived signals to the brain may enhance the motivation for exercise.


Subject(s)
Brain-Gut Axis , Dopamine , Exercise , Gastrointestinal Microbiome , Motivation , Running , Animals , Mice , Brain/cytology , Brain/metabolism , Dopamine/metabolism , Endocannabinoids/antagonists & inhibitors , Endocannabinoids/metabolism , Sensory Receptor Cells/metabolism , Brain-Gut Axis/physiology , Gastrointestinal Microbiome/physiology , Exercise/physiology , Exercise/psychology , Physical Conditioning, Animal/physiology , Physical Conditioning, Animal/psychology , Models, Animal , Humans , Ventral Striatum/cytology , Ventral Striatum/metabolism , Running/physiology , Running/psychology , Reward , Individuality
2.
Hepatology ; 65(2): 616-630, 2017 02.
Article in English | MEDLINE | ID: mdl-27809334

ABSTRACT

The regenerative capacity of the liver is essential for recovery from surgical resection or injuries induced by trauma or toxins. During liver regeneration, the concentration of nicotinamide adenine dinucleotide (NAD) falls, at least in part due to metabolic competition for precursors. To test whether NAD availability restricts the rate of liver regeneration, we supplied nicotinamide riboside (NR), an NAD precursor, in the drinking water of mice subjected to partial hepatectomy. NR increased DNA synthesis, mitotic index, and mass restoration in the regenerating livers. Intriguingly, NR also ameliorated the steatosis that normally accompanies liver regeneration. To distinguish the role of hepatocyte NAD levels from any systemic effects of NR, we generated mice overexpressing nicotinamide phosphoribosyltransferase, a rate-limiting enzyme for NAD synthesis, specifically in the liver. Nicotinamide phosphoribosyltransferase overexpressing mice were mildly hyperglycemic at baseline and, similar to mice treated with NR, exhibited enhanced liver regeneration and reduced steatosis following partial hepatectomy. Conversely, mice lacking nicotinamide phosphoribosyltransferase in hepatocytes exhibited impaired regenerative capacity that was completely rescued by administering NR. CONCLUSION: NAD availability is limiting during liver regeneration, and supplementation with precursors such as NR may be therapeutic in settings of acute liver injury. (Hepatology 2017;65:616-630).


Subject(s)
Liver Regeneration/drug effects , Liver Regeneration/physiology , Liver/pathology , NAD/biosynthesis , Niacinamide/analogs & derivatives , Animals , Disease Models, Animal , Fluorescent Antibody Technique , Hepatectomy/methods , Immunoblotting , Immunohistochemistry , Liver/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , NAD/metabolism , Niacinamide/pharmacology , Pyridinium Compounds , Random Allocation , Sensitivity and Specificity
3.
Proc Natl Acad Sci U S A ; 109(7): 2302-7, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22308320

ABSTRACT

Src tyrosine kinase has long been implicated in colon cancer but much remains to be learned about its substrates. The nuclear receptor hepatocyte nuclear factor 4α (HNF4α) has just recently been implicated in colon cancer but its role is poorly defined. Here we show that c-Src phosphorylates human HNF4α on three tyrosines in an interdependent and isoform-specific fashion. The initial phosphorylation site is a Tyr residue (Y14) present in the N-terminal A/B domain of P1- but not P2-driven HNF4α. Phospho-Y14 interacts with the Src SH2 domain, leading to the phosphorylation of two additional tyrosines in the ligand binding domain (LBD) in P1-HNF4α. Phosphomimetic mutants in the LBD decrease P1-HNF4α protein stability, nuclear localization and transactivation function. Immunohistochemical analysis of approximately 450 human colon cancer specimens (Stage III) reveals that P1-HNF4α is either lost or localized in the cytoplasm in approximately 80% of tumors, and that staining for active Src correlates with those events in a subset of samples. Finally, three SNPs in the human HNF4α protein, two of which are in the HNF4α F domain that interacts with the Src SH3 domain, increase phosphorylation by Src and decrease HNF4α protein stability and function, suggesting that individuals with those variants may be more susceptible to Src-mediated effects. This newly identified interaction between Src kinase and HNF4α has important implications for colon and other cancers.


Subject(s)
Cell Nucleus/metabolism , Colonic Neoplasms/enzymology , Hepatocyte Nuclear Factor 4/metabolism , Protein Isoforms/metabolism , src-Family Kinases/metabolism , Cell Line , Colonic Neoplasms/pathology , Hepatocyte Nuclear Factor 4/genetics , Humans , Molecular Mimicry , Phosphorylation , Polymorphism, Single Nucleotide , Protein Isoforms/genetics
4.
bioRxiv ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38979132

ABSTRACT

Nicotinamide adenine dinucleotide (NAD) is essential for many enzymatic reactions, including those involved in energy metabolism, DNA repair and the activity of sirtuins, a family of defensive deacylases. During aging, levels of NAD + can decrease by up to 50% in some tissues, the repletion of which provides a range of health benefits in both mice and humans. Whether or not the NAD + precursor nicotinamide mononucleotide (NMN) extends lifespan in mammals is not known. Here we investigate the effect of long-term administration of NMN on the health, cancer burden, frailty and lifespan of male and female mice. Without increasing tumor counts or severity in any tissue, NMN treatment of males and females increased activity, maintained more youthful gene expression patterns, and reduced overall frailty. Reduced frailty with NMN treatment was associated with increases in levels of Anerotruncus colihominis, a gut bacterium associated with lower inflammation in mice and increased longevity in humans. NMN slowed the accumulation of adipose tissue later in life and improved metabolic health in male but not female mice, while in females but not males, NMN increased median lifespan by 8.5%, possible due to sex-specific effects of NMN on NAD + metabolism. Together, these data show that chronic NMN treatment delays frailty, alters the microbiome, improves male metabolic health, and increases female mouse lifespan, without increasing cancer burden. These results highlight the potential of NAD + boosters for treating age-related conditions and the importance of using both sexes for interventional lifespan studies.

5.
Nat Metab ; 5(3): 414-430, 2023 03.
Article in English | MEDLINE | ID: mdl-36914909

ABSTRACT

Our understanding of how global changes in cellular metabolism contribute to human kidney disease remains incompletely understood. Here we show that nicotinamide adenine dinucleotide (NAD+) deficiency drives mitochondrial dysfunction causing inflammation and kidney disease development. Using unbiased global metabolomics in healthy and diseased human kidneys, we identify NAD+ deficiency as a disease signature. Furthermore using models of cisplatin- or ischaemia-reperfusion induced kidney injury in male mice we observed NAD+ depletion Supplemental nicotinamide riboside or nicotinamide mononucleotide restores NAD+ levels and improved kidney function. We find that cisplatin exposure causes cytosolic leakage of mitochondrial RNA (mtRNA) and activation of the cytosolic pattern recognition receptor retinoic acid-inducible gene I (RIG-I), both of which can be ameliorated by restoring NAD+. Male mice with RIG-I knock-out (KO) are protected from cisplatin-induced kidney disease. In summary, we demonstrate that the cytosolic release of mtRNA and RIG-I activation is an NAD+-sensitive mechanism contributing to kidney disease.


Subject(s)
Cisplatin , NAD , Animals , Humans , Male , Mice , Cisplatin/toxicity , Dietary Supplements , Inflammation , Kidney/metabolism , NAD/metabolism , RNA, Mitochondrial
6.
Nat Metab ; 5(10): 1691-1705, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37783943

ABSTRACT

Sustained responses to transient environmental stimuli are important for survival. The mechanisms underlying long-term adaptations to temporary shifts in abiotic factors remain incompletely understood. Here, we find that transient cold exposure leads to sustained transcriptional and metabolic adaptations in brown adipose tissue, which improve thermogenic responses to secondary cold encounter. Primary thermogenic challenge triggers the delayed induction of a lipid biosynthesis programme even after cessation of the original stimulus, which protects from subsequent exposures. Single-nucleus RNA sequencing and spatial transcriptomics reveal that this response is driven by a lipogenic subpopulation of brown adipocytes localized along the perimeter of Ucp1hi adipocytes. This lipogenic programme is associated with the production of acylcarnitines, and supplementation of acylcarnitines is sufficient to recapitulate improved secondary cold responses. Overall, our data highlight the importance of heterogenous brown adipocyte populations for 'thermogenic memory', which may have therapeutic implications for leveraging short-term thermogenesis to counteract obesity.


Subject(s)
Adipocytes, Brown , Adipose Tissue, Brown , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Thermogenesis/physiology
7.
Cell Metab ; 34(12): 1947-1959.e5, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36476934

ABSTRACT

Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor in mammals and microbes. Here we use isotope tracing to investigate the precursors supporting NAD synthesis in the gut microbiome of mice. We find that dietary NAD precursors are absorbed in the proximal part of the gastrointestinal tract and not available to microbes in the distal gut. Instead, circulating host nicotinamide enters the gut lumen and supports microbial NAD synthesis. The microbiome converts host-derived nicotinamide into nicotinic acid, which is used for NAD synthesis in host tissues and maintains circulating nicotinic acid levels even in the absence of dietary consumption. Moreover, the main route from oral nicotinamide riboside, a widely used nutraceutical, to host NAD is via conversion into nicotinic acid by the gut microbiome. Thus, we establish the capacity for circulating host micronutrients to feed the gut microbiome, and in turn be transformed in a manner that enhances host metabolic flexibility.


Subject(s)
NAD , Niacin , Mice , Animals , Niacinamide/pharmacology , Mammals
8.
BMC Genomics ; 12: 560, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-22085832

ABSTRACT

BACKGROUND: Alu repeats, which account for ~10% of the human genome, were originally considered to be junk DNA. Recent studies, however, suggest that they may contain transcription factor binding sites and hence possibly play a role in regulating gene expression. RESULTS: Here, we show that binding sites for a highly conserved member of the nuclear receptor superfamily of ligand-dependent transcription factors, hepatocyte nuclear factor 4alpha (HNF4α, NR2A1), are highly prevalent in Alu repeats. We employ high throughput protein binding microarrays (PBMs) to show that HNF4α binds > 66 unique sequences in Alu repeats that are present in ~1.2 million locations in the human genome. We use chromatin immunoprecipitation (ChIP) to demonstrate that HNF4α binds Alu elements in the promoters of target genes (ABCC3, APOA4, APOM, ATPIF1, CANX, FEMT1A, GSTM4, IL32, IP6K2, PRLR, PRODH2, SOCS2, TTR) and luciferase assays to show that at least some of those Alu elements can modulate HNF4α-mediated transactivation in vivo (APOM, PRODH2, TTR, APOA4). HNF4α-Alu elements are enriched in promoters of genes involved in RNA processing and a sizeable fraction are in regions of accessible chromatin. Comparative genomics analysis suggests that there may have been a gain in HNF4α binding sites in Alu elements during evolution and that non Alu repeats, such as Tiggers, also contain HNF4α sites. CONCLUSIONS: Our findings suggest that HNF4α, in addition to regulating gene expression via high affinity binding sites, may also modulate transcription via low affinity sites in Alu repeats.


Subject(s)
Alu Elements , Hepatocyte Nuclear Factor 4/genetics , Binding Sites , Computational Biology , Genome, Human , HEK293 Cells , Hepatocyte Nuclear Factor 4/metabolism , High-Throughput Screening Assays , Humans , Promoter Regions, Genetic , Protein Array Analysis , Protein Binding/genetics , Transcription, Genetic , Transcriptional Activation
9.
JCI Insight ; 6(7)2021 04 08.
Article in English | MEDLINE | ID: mdl-33690226

ABSTRACT

Liver regeneration is critical to survival after traumatic injuries, exposure to hepatotoxins, or surgical interventions, yet the underlying signaling and metabolic pathways remain unclear. In this study, we show that hepatocyte-specific loss of the mitochondrial deacetylase SIRT3 drastically impairs regeneration and worsens mitochondrial function after partial hepatectomy. Sirtuins, including SIRT3, require NAD as a cosubstrate. We previously showed that the NAD precursor nicotinamide riboside (NR) promotes liver regeneration, but whether this involves sirtuins has not been tested. Here, we show that despite their NAD dependence and critical roles in regeneration, neither SIRT3 nor its nuclear counterpart SIRT1 is required for NR to enhance liver regeneration. NR improves mitochondrial respiration in regenerating WT or mutant livers and rapidly increases oxygen consumption and glucose output in cultured hepatocytes. Our data support a direct enhancement of mitochondrial redox metabolism as the mechanism mediating improved liver regeneration after NAD supplementation and exclude signaling via SIRT1 and SIRT3. Therefore, we provide the first evidence to our knowledge for an essential role for a mitochondrial sirtuin during liver regeneration and insight into the beneficial effects of NR.


Subject(s)
Liver Regeneration/physiology , Mitochondria, Liver/physiology , Niacinamide/analogs & derivatives , Pyridinium Compounds/pharmacology , Sirtuin 3/metabolism , Animals , Hepatocytes/drug effects , Hepatocytes/metabolism , Liver Regeneration/drug effects , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mitochondria, Liver/drug effects , Niacinamide/pharmacology , Oxidation-Reduction , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuin 3/genetics
10.
Cell Syst ; 12(12): 1160-1172.e4, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34559996

ABSTRACT

NAD+ is an essential coenzyme for all living cells. NAD+ concentrations decline with age, but whether this reflects impaired production or accelerated consumption remains unclear. We employed isotope tracing and mass spectrometry to probe age-related changes in NAD+ metabolism across tissues. In aged mice, we observed modest tissue NAD+ depletion (median decrease ∼30%). Circulating NAD+ precursors were not significantly changed, and isotope tracing showed the unimpaired synthesis of nicotinamide from tryptophan. In most tissues of aged mice, turnover of the smaller tissue NAD+ pool was modestly faster such that absolute NAD+ biosynthetic flux was maintained, consistent with more active NAD+-consuming enzymes. Calorie restriction partially mitigated age-associated NAD+ decline by decreasing consumption. Acute inflammatory stress induced by LPS decreased NAD+ by impairing synthesis in both young and aged mice. Thus, the decline in NAD+ with normal aging is relatively subtle and occurs despite maintained NAD+ production, likely due to increased consumption.


Subject(s)
NAD , Niacinamide , Aging , Animals , Caloric Restriction , Mice , NAD/metabolism , Niacinamide/metabolism
11.
Exp Gerontol ; 134: 110888, 2020 Feb 22.
Article in English | MEDLINE | ID: mdl-32097708

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite that is reported to decline in concentration in tissues of aged animals. Strategies to increase NAD+ availability have shown promise in treating many conditions in rodents, including age-related degeneration, which has in turn driven intense interest in the effects of supplements on human health. However, many aspects of NAD+ metabolism remain poorly understood, and human data are limited. Here, we discuss the state of the evidence for an age-related decline in NAD+, along with potential mechanistic explanations, including increased consumption or decreased synthesis of NAD+ and changes in the composition of cells or tissues with age. Key challenges for the field involve the development of better tools to resolve information on the NAD+ content of specific cells and subcellular compartments as well as determining the threshold levels at which NAD+ depletion triggers physiological consequences in different tissues. Understanding how NAD+ metabolism changes with age in humans may ultimately allow the design of more targeted strategies to maintain its availability, such as inhibition of key consumers in specific tissues or direct delivery of precursors to sites of deficiency. In the meantime, human clinical trials with oral supplements are poised to provide some of the first direct evidence as to whether increasing NAD+ availability can impact human physiology. Thus, it is an exciting time for NAD+ research, with much remaining to be learned in terms of both basic biology and potential therapeutic applications.

12.
Mol Metab ; 32: 136-147, 2020 02.
Article in English | MEDLINE | ID: mdl-32029223

ABSTRACT

OBJECTIVE: Pharmacological agents targeting the mTOR complexes are used clinically as immunosuppressants and anticancer agents and can extend the lifespan of model organisms. An undesirable side effect of these drugs is hyperlipidemia. Although multiple roles have been described for mTOR complex 1 (mTORC1) in lipid metabolism, the etiology of hyperlipidemia remains incompletely understood. The objective of this study was to determine the influence of adipocyte mTORC1 signaling in systemic lipid homeostasis in vivo. METHODS: We characterized systemic lipid metabolism in mice lacking the mTORC1 subunit Raptor (RaptoraKO), the key lipolytic enzyme ATGL (ATGLaKO), or both (ATGL-RaptoraKO) in their adipocytes. RESULTS: Mice lacking mTORC1 activity in their adipocytes failed to completely suppress lipolysis in the fed state and displayed prominent hypertriglyceridemia and hypercholesterolemia. Blocking lipolysis in their adipose tissue restored normal levels of triglycerides and cholesterol in the fed state as well as the ability to clear triglycerides in an oral fat tolerance test. CONCLUSIONS: Unsuppressed adipose lipolysis in the fed state interferes with triglyceride clearance and contributes to hyperlipidemia. Adipose tissue mTORC1 activity is necessary for appropriate suppression of lipolysis and for the maintenance of systemic lipid homeostasis.


Subject(s)
Adipocytes/metabolism , Hyperlipidemias/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Animals , Hyperlipidemias/prevention & control , Lipolysis , Mechanistic Target of Rapamycin Complex 1/deficiency , Mice , Mice, Knockout , Mice, Transgenic
13.
Aging (Albany NY) ; 12(18): 17786-17799, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32960787

ABSTRACT

Rapamycin delays multiple age-related conditions and extends lifespan in organisms ranging from yeast to mice. However, the mechanisms by which rapamycin influences longevity are incompletely understood. The objective of this study was to investigate the effect of rapamycin on NAD+/NADH redox balance. We report that the NAD+/NADH ratio of C2C12 myoblasts or differentiated myotubes significantly decreases over time in culture, and that rapamycin prevents this effect. Despite lowering the NADH available to support ATP generation, rapamycin increases ATP availability, consistent with lowering energetic demand. Although rapamycin did not change the NAD+/NADH ratio or steady-state ATP concentration in the livers, kidneys, or muscles of young mice, optical redox imaging revealed that rapamycin caused a substantial decline in the NADH content and an increase in the optical redox ratio (a surrogate of NAD+/NADH redox ratio) in muscles from aged mice. Collectively, these data suggest that rapamycin favors a more oxidized NAD+/NADH ratio in aged muscle, which may influence metabolism and the activity of NAD+-dependent enzymes. This study provides new insight into the mechanisms by which rapamycin might influence the aging process to improve health and longevity among the aging population.

14.
Nat Metab ; 2(11): 1284-1304, 2020 11.
Article in English | MEDLINE | ID: mdl-33199925

ABSTRACT

Decreased NAD+ levels have been shown to contribute to metabolic dysfunction during aging. NAD+ decline can be partially prevented by knockout of the enzyme CD38. However, it is not known how CD38 is regulated during aging, and how its ecto-enzymatic activity impacts NAD+ homeostasis. Here we show that an increase in CD38 in white adipose tissue (WAT) and the liver during aging is mediated by accumulation of CD38+ immune cells. Inflammation increases CD38 and decreases NAD+. In addition, senescent cells and their secreted signals promote accumulation of CD38+ cells in WAT, and ablation of senescent cells or their secretory phenotype decreases CD38, partially reversing NAD+ decline. Finally, blocking the ecto-enzymatic activity of CD38 can increase NAD+ through a nicotinamide mononucleotide (NMN)-dependent process. Our findings demonstrate that senescence-induced inflammation promotes accumulation of CD38 in immune cells that, through its ecto-enzymatic activity, decreases levels of NMN and NAD+.


Subject(s)
ADP-ribosyl Cyclase 1/metabolism , Aging/metabolism , Membrane Glycoproteins/metabolism , NAD/biosynthesis , ADP-ribosyl Cyclase 1/genetics , ADP-ribosyl Cyclase 1/immunology , Adipocytes, White/metabolism , Adipose Tissue, White/metabolism , Aging/immunology , Animals , Bone Marrow Transplantation , Cellular Senescence , HEK293 Cells , Humans , Inflammation/immunology , Liver/growth & development , Liver/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nicotinamide Mononucleotide/metabolism , Phenotype
15.
Aging Cell ; 18(3): e12874, 2019 06.
Article in English | MEDLINE | ID: mdl-30821426

ABSTRACT

The prevalence of obesity increases with age in humans and in rodents. Age-related obesity is characterized by leptin resistance and associated with heightened risk of metabolic disorders. However, the effect of leptin resistance per se has been difficult to disentangle from other effects of aging. Here we demonstrate that celastrol, a natural phytochemical that was previously shown to act as a leptin sensitizer, induces weight loss in aged animals, but not in young controls. Celastrol reduces food intake and lowers fasting glucose without affecting energy expenditure. Unexpectedly, administration of celastrol just before the dark period disrupted circadian rhythms of sleep and activity. This regimen was also associated with loss of lean mass an outcome that would not be desirable in elderly patients. Adjusting the timing of celastrol administration by 12 hr, to the beginning of the light period, avoided interference with circadian rhythms while retaining the reductions in body weight and adiposity. Thus, targeting leptin signaling is an effective strategy to ameliorate age-associated weight gain, and can profoundly impact circadian rhythms.


Subject(s)
Aging/drug effects , Behavior, Animal/drug effects , Circadian Rhythm/drug effects , Leptin/antagonists & inhibitors , Obesity/drug therapy , Triterpenes/pharmacology , Animals , Body Weight/drug effects , Eating/drug effects , Energy Metabolism/drug effects , Glucose Tolerance Test , Injections, Intraperitoneal , Leptin/administration & dosage , Leptin/pharmacology , Male , Mice , Obesity/metabolism , Pentacyclic Triterpenes , Triterpenes/administration & dosage , Weight Loss/drug effects
16.
Mol Imaging Biol ; 21(3): 417-425, 2019 06.
Article in English | MEDLINE | ID: mdl-30977079

ABSTRACT

PURPOSE: Optical redox imaging (ORI) technique images cellular autofluorescence of nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins (Fp containing FAD, i.e., flavin adenine dinucleotide). ORI has found wide applications in the study of cellular energetics and metabolism and may potentially assist in disease diagnosis and prognosis. Fixed tissues have been reported to exhibit autofluorescence with similar spectral characteristics to those of NADH and Fp. However, few studies report on quantitative ORI of formalin-fixed paraffin-embedded (FFPE) unstained tissue slides for disease biomarkers. We investigate whether ORI of FFPE unstained skeletal muscle slides may provide relevant quantitative biological information. PROCEDURES: Living mouse muscle fibers and frozen and FFPE mouse muscle slides were subjected to ORI. Living mouse muscle fibers were imaged ex vivo before and after paraformaldehyde fixation. FFPE muscle slides of three mouse groups (young, mid-age, and muscle-specific overexpression of nicotinamide phosphoribosyltransferase (Nampt) transgenic mid-age) were imaged and compared to detect age-related redox differences. RESULTS: We observed that living muscle fiber and frozen and FFPE slides all had strong autofluorescence signals in the NADH and Fp channels. Paraformaldehyde fixation resulted in a significant increase in the redox ratio Fp/(NADH + Fp) of muscle fibers. Quantitative image analysis on FFPE unstained slides showed that mid-age gastrocnemius muscles had stronger NADH and Fp signals than young muscles. Gastrocnemius muscles from mid-age Nampt mice had lower NADH compared to age-matched controls, but had higher Fp than young controls. Soleus muscles had the same trend of change and appeared to be more oxidative than gastrocnemius muscles. Differential NADH and Fp signals were found between gastrocnemius and soleus muscles within both mid-aged control and Nampt groups. CONCLUSION: Aging effect on redox status quantified by ORI of FFPE unstained muscle slides was reported for the first time. Quantitative information from ORI of FFPE unstained slides may be useful for biomedical applications.


Subject(s)
Muscles/diagnostic imaging , Muscles/metabolism , Optical Imaging , Tissue Fixation , Animals , Flavoproteins/metabolism , Formaldehyde , Male , Mice, Inbred C57BL , Muscle Fibers, Skeletal/metabolism , NAD/metabolism , Oxidation-Reduction , Paraffin Embedding , Polymers , Staining and Labeling
17.
Aging Cell ; 18(5): e13014, 2019 10.
Article in English | MEDLINE | ID: mdl-31373126

ABSTRACT

The mechanistic target of rapamycin (mTOR) is an evolutionarily conserved protein kinase that regulates growth and metabolism. mTOR is found in two protein complexes, mTORC1 and mTORC2, that have distinct components and substrates and are both inhibited by rapamycin, a macrolide drug that robustly extends lifespan in multiple species including worms and mice. Although the beneficial effect of rapamycin on longevity is generally attributed to reduced mTORC1 signaling, disruption of mTORC2 signaling can also influence the longevity of worms, either positively or negatively depending on the temperature and food source. Here, we show that loss of hypothalamic mTORC2 signaling in mice decreases activity level, increases the set point for adiposity, and renders the animals susceptible to diet-induced obesity. Hypothalamic mTORC2 signaling normally increases with age, and mice lacking this pathway display higher fat mass and impaired glucose homeostasis throughout life, become more frail with age, and have decreased overall survival. We conclude that hypothalamic mTORC2 is essential for the normal metabolic health, fitness, and lifespan of mice. Our results have implications for the use of mTORC2-inhibiting pharmaceuticals in the treatment of brain cancer and diseases of aging.


Subject(s)
Hypothalamus/metabolism , Longevity , Mechanistic Target of Rapamycin Complex 2/metabolism , Animals , Female , Mice , Mice, Inbred C57BL
18.
Mol Endocrinol ; 21(6): 1297-311, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17389749

ABSTRACT

Nuclear receptors (NRs) are a superfamily of transcription factors whose genomic functions are known to be activated by lipophilic ligands, but little is known about how to deactivate them or how to turn on their nongenomic functions. One obvious mechanism is to alter the nuclear localization of the receptors. Here, we show that protein kinase C (PKC) phosphorylates a highly conserved serine (Ser) between the two zinc fingers of the DNA binding domain of orphan receptor hepatocyte nuclear factor 4alpha (HNF4alpha). This Ser (S78) is adjacent to several positively charged residues (Arg or Lys), which we show here are involved in nuclear localization of HNF4alpha and are conserved in nearly all other NRs, along with the Ser/threonine (Thr). A phosphomimetic mutant of HNF4alpha (S78D) reduced DNA binding, transactivation ability, and protein stability. It also impaired nuclear localization, an effect that was greatly enhanced in the MODY1 mutant Q268X. Treatment of the hepatocellular carcinoma cell line HepG2 with PKC activator phorbol 12-myristate 13-acetate also resulted in increased cytoplasmic localization of HNF4alpha as well as decreased endogenous HNF4alpha protein levels in a proteasome-dependent fashion. We also show that PKC phosphorylates the DNA binding domain of other NRs (retinoic acid receptor alpha, retinoid X receptor alpha, and thyroid hormone receptor beta) and that phosphomimetic mutants of the same Ser/Thr result in cytoplasmic localization of retinoid X receptor alpha and peroxisome proliferator-activated receptor alpha. Thus, phosphorylation of this conserved Ser between the two zinc fingers may be a common mechanism for regulating the function of NRs.


Subject(s)
Hepatocyte Nuclear Factor 4/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Serine/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Cell Line, Tumor , Cell Nucleus/chemistry , Cell Nucleus/metabolism , Conserved Sequence , Cytoplasm/chemistry , Cytoplasm/metabolism , DNA/metabolism , Down-Regulation , Hepatocyte Nuclear Factor 4/analysis , Hepatocyte Nuclear Factor 4/genetics , Humans , Molecular Sequence Data , Mutation , Phosphorylation , Protein Kinase C/metabolism , Protein Structure, Tertiary , Rats , Receptors, Cytoplasmic and Nuclear/analysis , Receptors, Cytoplasmic and Nuclear/genetics , Tetradecanoylphorbol Acetate/pharmacology , Transcriptional Activation
19.
Elife ; 72018 06 12.
Article in English | MEDLINE | ID: mdl-29893687

ABSTRACT

Mitochondrial NAD levels influence fuel selection, circadian rhythms, and cell survival under stress. It has alternately been argued that NAD in mammalian mitochondria arises from import of cytosolic nicotinamide (NAM), nicotinamide mononucleotide (NMN), or NAD itself. We provide evidence that murine and human mitochondria take up intact NAD. Isolated mitochondria preparations cannot make NAD from NAM, and while NAD is synthesized from NMN, it does not localize to the mitochondrial matrix or effectively support oxidative phosphorylation. Treating cells with nicotinamide riboside that is isotopically labeled on the nicotinamide and ribose moieties results in the appearance of doubly labeled NAD within mitochondria. Analogous experiments with doubly labeled nicotinic acid riboside (labeling cytosolic NAD without labeling NMN) demonstrate that NAD(H) is the imported species. Our results challenge the long-held view that the mitochondrial inner membrane is impermeable to pyridine nucleotides and suggest the existence of an unrecognized mammalian NAD (or NADH) transporter.


Subject(s)
Mitochondria, Liver/metabolism , Mitochondria, Muscle/metabolism , NAD/metabolism , Niacinamide/analogs & derivatives , Nicotinamide Mononucleotide/metabolism , Animals , Biological Transport , Cell Line , HEK293 Cells , HL-60 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Myoblasts/metabolism , Niacinamide/metabolism , Niacinamide/pharmacology , Pyridinium Compounds
20.
PLoS One ; 13(5): e0196743, 2018.
Article in English | MEDLINE | ID: mdl-29746501

ABSTRACT

BACKGROUND AND AIMS: Associated with numerous metabolic and behavioral abnormalities, obesity is classified by metrics reliant on body weight (such as body mass index). However, overnutrition is the common cause of obesity, and may independently contribute to these obesity-related abnormalities. Here, we use dietary challenges to parse apart the relative influence of diet and/or energy balance from body weight on various metabolic and behavioral outcomes. MATERIALS AND METHODS: Seventy male mice (mus musculus) were subjected to the diet switch feeding paradigm, generating groups with various body weights and energetic imbalances. Spontaneous activity patterns, blood metabolite levels, and unbiased gene expression of the nutrient-sensing ventral hypothalamus (using RNA-sequencing) were measured, and these metrics were compared using standardized multivariate linear regression models. RESULTS: Spontaneous activity patterns were negatively related to body weight (p<0.0001) but not diet/energy balance (p = 0.63). Both body weight and diet/energy balance predicted circulating glucose and insulin levels, while body weight alone predicted plasma leptin levels. Regarding gene expression within the ventral hypothalamus, only two genes responded to diet/energy balance (neuropeptide y [npy] and agouti-related peptide [agrp]), while others were related only to body weight. CONCLUSIONS: Collectively, these results demonstrate that individual components of obesity-specifically obesogenic diets/energy imbalance and elevated body mass-can have independent effects on metabolic and behavioral outcomes. This work highlights the shortcomings of using body mass-based indices to assess metabolic health, and identifies novel associations between blood biomarkers, neural gene expression, and animal behavior following dietary challenges.


Subject(s)
Behavior, Animal/physiology , Body Weight/physiology , Circadian Rhythm/physiology , Energy Metabolism/physiology , Sleep/physiology , Wakefulness/physiology , Agouti-Related Protein/metabolism , Animals , Biomarkers/blood , Diet/methods , Energy Intake/physiology , Gene Expression/physiology , Hypothalamus/metabolism , Hypothalamus/physiology , Leptin/blood , Male , Mice , Mice, Inbred C57BL , Neuropeptide Y/metabolism , Obesity/blood , Obesity/metabolism , Obesity/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL