Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 238
Filter
Add more filters

Publication year range
1.
Cell ; 187(17): 4488-4519, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39178830

ABSTRACT

The completion of the Human Genome Project has provided a foundational blueprint for understanding human life. Nonetheless, understanding the intricate mechanisms through which our genetic blueprint is involved in disease or orchestrates development across temporal and spatial dimensions remains a profound scientific challenge. Recent breakthroughs in cellular omics technologies have paved new pathways for understanding the regulation of genomic elements and the relationship between gene expression, cellular functions, and cell fate determination. The advent of spatial omics technologies, encompassing both imaging and sequencing-based methodologies, has enabled a comprehensive understanding of biological processes from a cellular ecosystem perspective. This review offers an updated overview of how spatial omics has advanced our understanding of the translation of genetic information into cellular heterogeneity and tissue structural organization and their dynamic changes over time. It emphasizes the discovery of various biological phenomena, related to organ functionality, embryogenesis, species evolution, and the pathogenesis of diseases.


Subject(s)
Genomics , Humans , Animals , Proteomics
2.
Cell ; 186(17): 3726-3743.e24, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37442136

ABSTRACT

Elucidating the cellular organization of the cerebral cortex is critical for understanding brain structure and function. Using large-scale single-nucleus RNA sequencing and spatial transcriptomic analysis of 143 macaque cortical regions, we obtained a comprehensive atlas of 264 transcriptome-defined cortical cell types and mapped their spatial distribution across the entire cortex. We characterized the cortical layer and region preferences of glutamatergic, GABAergic, and non-neuronal cell types, as well as regional differences in cell-type composition and neighborhood complexity. Notably, we discovered a relationship between the regional distribution of various cell types and the region's hierarchical level in the visual and somatosensory systems. Cross-species comparison of transcriptomic data from human, macaque, and mouse cortices further revealed primate-specific cell types that are enriched in layer 4, with their marker genes expressed in a region-dependent manner. Our data provide a cellular and molecular basis for understanding the evolution, development, aging, and pathogenesis of the primate brain.


Subject(s)
Cerebral Cortex , Macaca , Single-Cell Analysis , Transcriptome , Animals , Humans , Mice , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Macaca/metabolism , Transcriptome/genetics
3.
Cell ; 185(10): 1777-1792.e21, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35512705

ABSTRACT

Spatially resolved transcriptomic technologies are promising tools to study complex biological processes such as mammalian embryogenesis. However, the imbalance between resolution, gene capture, and field of view of current methodologies precludes their systematic application to analyze relatively large and three-dimensional mid- and late-gestation embryos. Here, we combined DNA nanoball (DNB)-patterned arrays and in situ RNA capture to create spatial enhanced resolution omics-sequencing (Stereo-seq). We applied Stereo-seq to generate the mouse organogenesis spatiotemporal transcriptomic atlas (MOSTA), which maps with single-cell resolution and high sensitivity the kinetics and directionality of transcriptional variation during mouse organogenesis. We used this information to gain insight into the molecular basis of spatial cell heterogeneity and cell fate specification in developing tissues such as the dorsal midbrain. Our panoramic atlas will facilitate in-depth investigation of longstanding questions concerning normal and abnormal mammalian development.


Subject(s)
Organogenesis , Transcriptome , Animals , DNA/genetics , Embryo, Mammalian , Female , Gene Expression Profiling/methods , Mammals/genetics , Mice , Organogenesis/genetics , Pregnancy , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Transcriptome/genetics
4.
Nat Methods ; 21(9): 1658-1667, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38907114

ABSTRACT

Advances in spatial omics technologies now allow multiple types of data to be acquired from the same tissue slice. To realize the full potential of such data, we need spatially informed methods for data integration. Here, we introduce SpatialGlue, a graph neural network model with a dual-attention mechanism that deciphers spatial domains by intra-omics integration of spatial location and omics measurement followed by cross-omics integration. We demonstrated SpatialGlue on data acquired from different tissue types using different technologies, including spatial epigenome-transcriptome and transcriptome-proteome modalities. Compared to other methods, SpatialGlue captured more anatomical details and more accurately resolved spatial domains such as the cortex layers of the brain. Our method also identified cell types like spleen macrophage subsets located at three different zones that were not available in the original data annotations. SpatialGlue scales well with data size and can be used to integrate three modalities. Our spatial multi-omics analysis tool combines the information from complementary omics modalities to obtain a holistic view of cellular and tissue properties.


Subject(s)
Transcriptome , Animals , Neural Networks, Computer , Mice , Humans , Brain/metabolism , Proteome , Proteomics/methods , Genomics/methods , Epigenome , Computational Biology/methods , Spleen/metabolism , Spleen/cytology , Multiomics
5.
Nucleic Acids Res ; 52(D1): D1053-D1061, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37953328

ABSTRACT

Recent technological developments in spatial transcriptomics allow researchers to measure gene expression of cells and their spatial locations at the single-cell level, generating detailed biological insight into biological processes. A comprehensive database could facilitate the sharing of spatial transcriptomic data and streamline the data acquisition process for researchers. Here, we present the Spatial TranscriptOmics DataBase (STOmicsDB), a database that serves as a one-stop hub for spatial transcriptomics. STOmicsDB integrates 218 manually curated datasets representing 17 species. We annotated cell types, identified spatial regions and genes, and performed cell-cell interaction analysis for these datasets. STOmicsDB features a user-friendly interface for the rapid visualization of millions of cells. To further facilitate the reusability and interoperability of spatial transcriptomic data, we developed standards for spatial transcriptomic data archiving and constructed a spatial transcriptomic data archiving system. Additionally, we offer a distinctive capability of customizing dedicated sub-databases in STOmicsDB for researchers, assisting them in visualizing their spatial transcriptomic analyses. We believe that STOmicsDB could contribute to research insights in the spatial transcriptomics field, including data archiving, sharing, visualization and analysis. STOmicsDB is freely accessible at https://db.cngb.org/stomics/.


Subject(s)
Databases, Genetic , Gene Expression Profiling , Transcriptome , Information Dissemination
6.
Mol Cell Proteomics ; 22(12): 100667, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37852321

ABSTRACT

Ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) are the two primary etiologies of end-stage heart failure. However, there remains a dearth of comprehensive understanding the global perspective and the dynamics of the proteome and phosphoproteome in ICM and DCM, which hinders the profound comprehension of pivotal biological characteristics as well as differences in signal transduction activation mechanisms between these two major types of heart failure. We conducted high-throughput quantification proteomics and phosphoproteomics analysis of clinical heart tissues with ICM or DCM, which provided us the system-wide molecular insights into pathogenesis of clinical heart failure in both ICM and DCM. Both protein and phosphorylation expression levels exhibit distinct separation between heart failure and normal control heart tissues, highlighting the prominent characteristics of ICM and DCM. By integrating with omics results, Western blots, phosphosite-specific mutation, chemical intervention, and immunofluorescence validation, we found a significant activation of the PRKACA-GSK3ß signaling pathway in ICM. This signaling pathway influenced remolding of the microtubule network and regulated the critical actin filaments in cardiac construction. Additionally, DCM exhibited significantly elevated mitochondria energy supply injury compared to ICM, which induced the ROCK1-vimentin signaling pathway activation and promoted mitophagy. Our study not only delineated the major distinguishing features between ICM and DCM but also revealed the crucial discrepancy in the mechanisms between ICM and DCM. This study facilitates a more profound comprehension of pathophysiologic heterogeneity between ICM and DCM and provides a novel perspective to assist in the discovery of potential therapeutic targets for different types of heart failure.


Subject(s)
Cardiomyopathy, Dilated , Heart Failure , Myocardial Ischemia , Humans , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Proteomics , Mitophagy , Myocardial Ischemia/genetics , Myocardial Ischemia/pathology , Heart Failure/metabolism , Heart Failure/pathology , Cytoskeleton/metabolism , Microtubules/metabolism , rho-Associated Kinases
7.
Gut ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839271

ABSTRACT

OBJECTIVE: Fat mass and obesity-associated protein (FTO), an eraser of N 6-methyadenosine (m6A), plays oncogenic roles in various cancers. However, its role in hepatocellular carcinoma (HCC) is unclear. Furthermore, small extracellular vesicles (sEVs, or exosomes) are critical mediators of tumourigenesis and metastasis, but the relationship between FTO-mediated m6A modification and sEVs in HCC is unknown. DESIGN: The functions and mechanisms of FTO and glycoprotein non-metastatic melanoma protein B (GPNMB) in HCC progression were investigated in vitro and in vivo. Neutralising antibody of syndecan-4 (SDC4) was used to assess the significance of sEV-GPNMB. FTO inhibitor CS2 was used to examine the effects on anti-PD-1 and sorafenib treatment. RESULTS: FTO expression was upregulated in patient HCC tumours. Functionally, FTO promoted HCC cell proliferation, migration and invasion in vitro, and tumour growth and metastasis in vivo. FTO knockdown enhanced the activation and recruitment of tumour-infiltrating CD8+ T cells. Furthermore, we identified GPNMB to be a downstream target of FTO, which reduced the m6A abundance of GPNMB, hence, stabilising it from degradation by YTH N 6-methyladenosine RNA binding protein F2. Of note, GPNMB was packaged into sEVs derived from HCC cells and bound to the surface receptor SDC4 of CD8+ T cells, resulting in the inhibition of CD8+ T cell activation. A potential FTO inhibitor, CS2, suppresses the oncogenic functions of HCC cells and enhances the sensitivity of anti-PD-1 and sorafenib treatment. CONCLUSION: Targeting the FTO/m6A/GPNMB axis could significantly suppress tumour growth and metastasis, and enhance immune activation, highlighting the potential of targeting FTO signalling with effective inhibitors for HCC therapy.

8.
BMC Med ; 22(1): 148, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561738

ABSTRACT

BACKGROUND: Indobufen is widely used in patients with aspirin intolerance in East Asia. The OPTION trial launched by our cardiac center examined the performance of indobufen based dual antiplatelet therapy (DAPT) after percutaneous coronary intervention (PCI). However, the vast majority of patients with acute coronary syndrome (ACS) and aspirin intolerance were excluded. We aimed to explore this question in a real-world population. METHODS: Patients enrolled in the ASPIRATION registry were grouped according to the DAPT strategy that they received after PCI. The primary endpoints were major adverse cardiovascular and cerebrovascular events (MACCE) and Bleeding Academic Research Consortium (BARC) type 2, 3, or 5 bleeding. Propensity score matching (PSM) was adopted for confounder adjustment. RESULTS: A total of 7135 patients were reviewed. After one-year follow-up, the indobufen group was associated with the same risk of MACCE versus the aspirin group after PSM (6.5% vs. 6.5%, hazard ratio [HR] = 0.99, 95% confidence interval [CI] = 0.65 to 1.52, P = 0.978). However, BARC type 2, 3, or 5 bleeding was significantly reduced (3.0% vs. 11.9%, HR = 0.24, 95% CI = 0.15 to 0.40, P < 0.001). These results were generally consistent across different subgroups including aspirin intolerance, except that indobufen appeared to increase the risk of MACCE in patients with ACS. CONCLUSIONS: Indobufen shared the same risk of MACCE but a lower risk of bleeding after PCI versus aspirin from a real-world perspective. Due to the observational nature of the current analysis, future studies are still warranted to further evaluate the efficacy of indobufen based DAPT, especially in patients with ACS. TRIAL REGISTRATION: Chinese Clinical Trial Register ( https://www.chictr.org.cn ); Number: ChiCTR2300067274.


Subject(s)
Acute Coronary Syndrome , Isoindoles , Percutaneous Coronary Intervention , Phenylbutyrates , Humans , Acute Coronary Syndrome/drug therapy , Acute Coronary Syndrome/surgery , Aspirin/adverse effects , Drug Therapy, Combination , Hemorrhage/chemically induced , Hemorrhage/epidemiology , Percutaneous Coronary Intervention/adverse effects , Percutaneous Coronary Intervention/methods , Platelet Aggregation Inhibitors/adverse effects , Registries , Treatment Outcome
9.
Basic Res Cardiol ; 119(1): 113-131, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38168863

ABSTRACT

Calcium overload is the key trigger in cardiac microvascular ischemia-reperfusion (I/R) injury, and calreticulin (CRT) is a calcium buffering protein located in the endoplasmic reticulum (ER). Additionally, the role of pinacidil, an antihypertensive drug, in protecting cardiac microcirculation against I/R injury has not been investigated. Hence, this study aimed to explore the benefits of pinacidil on cardiac microvascular I/R injury with a focus on endothelial calcium homeostasis and CRT signaling. Cardiac vascular perfusion and no-reflow area were assessed using FITC-lectin perfusion assay and Thioflavin-S staining. Endothelial calcium homeostasis, CRT-IP3Rs-MCU signaling expression, and apoptosis were assessed by real-time calcium signal reporter GCaMP8, western blotting, and fluorescence staining. Drug affinity-responsive target stability (DARTS) assay was adopted to detect proteins that directly bind to pinacidil. The present study found pinacidil treatment improved capillary density and perfusion, reduced no-reflow and infraction areas, and improved cardiac function and hemodynamics after I/R injury. These benefits were attributed to the ability of pinacidil to alleviate calcium overload and mitochondria-dependent apoptosis in cardiac microvascular endothelial cells (CMECs). Moreover, the DARTS assay showed that pinacidil directly binds to HSP90, through which it inhibits chaperone-mediated autophagy (CMA) degradation of CRT. CRT overexpression inhibited IP3Rs and MCU expression, reduced mitochondrial calcium inflow and mitochondrial injury, and suppressed endothelial apoptosis. Importantly, endothelial-specific overexpression of CRT shared similar benefits with pinacidil on cardiovascular protection against I/R injury. In conclusion, our data indicate that pinacidil attenuated microvascular I/R injury potentially through improving CRT degradation and endothelial calcium overload.


Subject(s)
Chaperone-Mediated Autophagy , Reperfusion Injury , Humans , Pinacidil/metabolism , Endothelial Cells/metabolism , Calreticulin/metabolism , Calcium/metabolism , Reperfusion Injury/metabolism , Apoptosis
10.
Opt Express ; 32(11): 20339-20349, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859147

ABSTRACT

This paper studies the dynamic response characteristics of the scanning angle in a liquid crystal cladding waveguide beam scanner. Based on liquid crystal dynamic theory, finite element analysis and vectorial refraction law, a dynamic response calculation model of scanning angle is constructed. The simulation results show that the dynamic responses of the scanning angle during the electric field-on and field-off processes are asymmetric, and exhibit "S"-shape and "L"-shape changing trends, respectively. In addition, by comparing with the bulk phase modulation response process of traditional liquid crystal devices, the intrinsic physical reason for the rapid light regulation of the liquid crystal cladding waveguide beam scanner is clarified to be that the liquid crystal close to the core layer has a faster rotation speed during the electric field-off process. Moreover, the liquid crystal cladding waveguide beam scanner is experimentally tested, and the experiment results are in good agreement with theoretical simulations.

11.
Pharmacol Res ; 200: 107057, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218357

ABSTRACT

Mitochondria-associated ferroptosis exacerbates cardiac microvascular dysfunction in diabetic cardiomyopathy (DCM). Nicorandil, an ATP-sensitive K+ channel opener, protects against endothelial dysfunction, mitochondrial dysfunction, and DCM; however, its effects on ferroptosis and mitophagy remain unexplored. The present study aimed to assess the beneficial effects of nicorandil against endothelial ferroptosis in DCM and the underlying mechanisms. Cardiac microvascular perfusion was assessed using a lectin perfusion assay, while mitophagy was assessed via mt-Keima transfection and transmission electron microscopy. Ferroptosis was examined using mRNA sequencing, fluorescence staining, and western blotting. The mitochondrial localization of Parkin, ACSL4, and AMPK was determined via immunofluorescence staining. Following long-term diabetes, nicorandil treatment improved cardiac function and remodeling by alleviating cardiac microvascular injuries, as evidenced by the improved microvascular perfusion and structural integrity. mRNA-sequencing and biochemical analyses showed that ferroptosis occurred and Pink1/Parkin-dependent mitophagy was suppressed in cardiac microvascular endothelial cells after diabetes. Nicorandil treatment suppressed mitochondria-associated ferroptosis by promoting the Pink1/Parkin-dependent mitophagy. Moreover, nicorandil treatment increased the phosphorylation level of AMPKα1 and promoted its mitochondrial translocation, which further inhibited the mitochondrial translocation of ACSL4 via mitophagy and ultimately suppressed mitochondria-associated ferroptosis. Importantly, overexpression of mitochondria-localized AMPKα1 (mitoAα1) shared similar benefits with nicorandil on mitophagy, ferroptosis and cardiovascular protection against diabetic injury. In conclusion, the present study demonstrated the therapeutic effects of nicorandil against cardiac microvascular ferroptosis in DCM and revealed that the mitochondria-localized AMPK-Parkin-ACSL4 signaling pathway mediates mitochondria-associated ferroptosis and the development of cardiac microvascular dysfunction.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Ferroptosis , Humans , Diabetic Cardiomyopathies/genetics , AMP-Activated Protein Kinases/metabolism , Nicorandil/pharmacology , Nicorandil/therapeutic use , Nicorandil/metabolism , Endothelial Cells/metabolism , Mitochondria/metabolism , Signal Transduction , Myocytes, Cardiac/metabolism , Ubiquitin-Protein Ligases/metabolism , RNA, Messenger/metabolism , Diabetes Mellitus/metabolism
12.
J Dairy Sci ; 107(6): 3515-3530, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38278292

ABSTRACT

Milk consumption in China has experienced a rapid growth over the past few decades. This study explored milk consumption habits of older Chinese adult regular milk consumers, by investigating what, where, when, with whom, why, and how milk was consumed. This study (n = 1,000) was conducted in 5 cities in China (first tier: Beijing, Shanghai and Guangzhou; second tier: Chengdu and Shenyang) with participants balanced by sex and age groups (45-55 and 65-75 yr old). Given different economies, general dietary habits, and lifestyles, differences in milk consumption habits between cities were hypothesized. The results showed that almost all participants consumed cow milk, at home and by direct drinking. Most participants consumed milk during breakfast, with their family and for nutrition and health purposes. However, variations by city were found in what type of, what fat level of, what brand of, when and how milk was consumed. Multiple factor analysis showed that "what" variable differentiated cities between tiers and among the first-tier cities, and that "when" and "how" variables also separated the 2 second-tier cities and from the first-tier cities. Although variation in how milk was consumed was also observed between sexes and age groups, hierarchical cluster analysis revealed that the 4 clusters of milk consumption habits derived were mainly differentiated by city: Beijing and Shanghai, Guangzhou, Chengdu, and Shenyang. This study provides comprehensive insights into the milk consumption habits of older Chinese adults and highlights the significant heterogeneity in milk consumption habits in China by city.


Subject(s)
Milk , Aged , Animals , Female , Humans , Male , Middle Aged , China , Cities , East Asian People , Feeding Behavior , Diet
13.
Int J Mol Sci ; 25(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38791604

ABSTRACT

Peanut (Arachis hypogaea L.) is an important crop that provides essential proteins and oils for human and animal consumption. 9-cis-epoxycarotenoid dioxygenase (NCED) have been found can play a vital role in abscisic acid (ABA) biosynthesis and may be a response to drought stress. Until now, in Arachis hypogaea, no information about the NCED gene family has been reported and the importance of NCED-related drought tolerance is unclear. In this study, eight NCED genes in Arachis hypogaea, referred to as AhNCEDs, are distributed across eight chromosomes, with duplication events in AhNCED1 and AhNCED2, AhNCED3 and AhNCED4, and AhNCED6 and AhNCED7. Comparative analysis revealed that NCED genes are highly conserved among plant species, including Pisum sativum, Phaseolus vulgaris, Glycine max, Arabidopsis thaliana, Gossypium hirsutum, and Oryza sativa. Further promoter analysis showed AhNCEDs have ABA-related and drought-inducible elements. The phenotyping of Arachis hypogaea cultivars NH5 and FH18 demonstrated that NH5 is drought-tolerant and FH18 is drought-sensitive. Transcriptome expression analysis revealed the differential regulation of AhNCEDs expression in both NH5 and FH18 cultivars under drought stress. Furthermore, compared to the Arachis hypogaea cultivar FH18, the NH5 exhibited a significant upregulation of AhNCED1/2 expression under drought. To sum up, this study provides an insight into the drought-related AhNCED genes, screened out the potential candidates to regulate drought tolerance and ABA biosynthesis in Arachis hypogaea.


Subject(s)
Arachis , Dioxygenases , Droughts , Gene Expression Regulation, Plant , Plant Proteins , Stress, Physiological , Arachis/genetics , Arachis/metabolism , Stress, Physiological/genetics , Dioxygenases/genetics , Dioxygenases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Abscisic Acid/metabolism , Phylogeny , Gene Expression Profiling , Promoter Regions, Genetic/genetics
14.
J Child Lang ; 51(2): 434-453, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37424065

ABSTRACT

The current study investigated whether vocabulary relates to phonetic categorization at neural level in early childhood. Electoencephalogram (EEG) responses were collected from 53 Dutch 20-month-old children in a passive oddball paradigm, in which they were presented with two nonwords "giep" [ɣip] and "gip" [ɣɪp] that were contrasted solely by the vowel. In the multiple-speaker condition, both nonwords were produced by twelve different speakers; while, in the single-speaker condition, one single token of each word was used as stimuli. Infant positive mismatch responses (p-MMR) were elicited in both conditions without significant amplitude differences. When the infants were median split based on vocabulary level, the large and small vocabulary groups showed comparable p-MMR amplitudes yet different scalp distribution in both conditions. These results suggest successful phonetic categorization of native similar sounding vowels at 20 months, and a close relationship between speech categorization and vocabulary development.


Subject(s)
Speech Perception , Vocabulary , Infant , Child , Humans , Child, Preschool , Language Development , Evoked Potentials/physiology , Language , Speech , Phonetics , Speech Perception/physiology
15.
Angew Chem Int Ed Engl ; 63(32): e202404603, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38764411

ABSTRACT

Polymers may suffer from sudden mechanical damages during long-term use under various harsh operating environments. Rapid and real-time self-healing will extend their service life, which is particularly attractive in the context of circular economy. In this work, a lignin cluster polymerization strategy (LCPS) was designed to prepare a series of lignin functionalized polyolefin composites with excellent mechanical properties through nickel catalyzed copolymerization of ethylene and lignin cluster monomers. These composites can achieve rapid self-healing within 30 seconds under a variety of extreme usage environments (underwater, seawater, extremely low temperatures as low as -60 °C, organic solvents, acid/alkali solvents, etc.), which is of great significance for real-time self-healing of sudden mechanical damage. More importantly, the dynamic cross-linking network within these composites enable great re-processability and amazing sealing performances.

16.
Angew Chem Int Ed Engl ; : e202411443, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034634

ABSTRACT

The main challenges faced by aqueous rechargeable nickel-zinc batteries are their comparatively low energy density and poor cycling stability. Moreover, the preparation procedures of these cathodes are complex and not easily scalable. Herein, we utilized MXene to improve the electrodeposition preparation of NiCo layered double hydroxides (LDH). Benefiting from the improved interfacial contact between nickel foam (NF) and platting solution and the enhanced ionic conductivity of platting product based on MXene additives, the resulting binder-free NiCo LDH electrode can achieve ultrahigh areal loading (~65 mg cm-2) with abundant active surface for redox reactions and maintained short transport pathway for ion diffusion and charge transfer. Furthermore, the as-fabricated alkaline NiCo LDH-based battery delivers high discharge capacity, up to 20.2 mAh cm-2 (311 mAh g-1), accompanied by remarkable rate performance (9.6 mAh cm-2 or 148 mAh g-1 at 120 mA cm-2). Due to the high structural and chemical stability of MXenes/LDH-based electrode, excellent cycling life can also be achieved with 88.6% capacity retention after 10000 cycles. In addition, ultrahigh areal energy density (31.2 mWh cm-2) and gravimetric energy density (465 Wh kg-1) can be simultaneously achieved. This work has inspired the design of advanced cathode materials to develop high-performance aqueous zinc batteries.

17.
Gut ; 72(7): 1370-1384, 2023 07.
Article in English | MEDLINE | ID: mdl-36631249

ABSTRACT

OBJECTIVE: Growing evidence indicates that tumour cells exhibit characteristics similar to their lineage progenitor cells. We found that S100 calcium binding protein A10 (S100A10) exhibited an expression pattern similar to that of liver progenitor genes. However, the role of S100A10 in hepatocellular carcinoma (HCC) progression is unclear. Furthermore, extracellular vesicles (EVs) are critical mediators of tumourigenesis and metastasis, but the extracellular functions of S100A10, particularly those related to EVs (EV-S100A10), are unknown. DESIGN: The functions and mechanisms of S100A10 and EV-S100A10 in HCC progression were investigated in vitro and in vivo. Neutralising antibody (NA) to S100A10 was used to evaluate the significance of EV-S100A10. RESULTS: Functionally, S100A10 promoted HCC initiation, self-renewal, chemoresistance and metastasis in vitro and in vivo. Of significance, we found that S100A10 was secreted by HCC cells into EVs both in vitro and in the plasma of patients with HCC. S100A10-enriched EVs enhanced the stemness and metastatic ability of HCC cells, upregulated epidermal growth factor receptor (EGFR), AKT and ERK signalling, and promoted epithelial-mesenchymal transition. EV-S100A10 also functioned as a chemoattractant in HCC cell motility. Of significance, S100A10 governed the protein cargos in EVs and mediated the binding of MMP2, fibronectin and EGF to EV membranes through physical binding with integrin αⅤ. Importantly, blockage of EV-S100A10 with S100A10-NA significantly abrogated these enhancing effects. CONCLUSION: Altogether, our results uncovered that S100A10 promotes HCC progression significantly via its transfer in EVs and regulating the protein cargoes of EVs. EV-S100A10 may be a potential therapeutic target and biomarker for HCC progression.


Subject(s)
Carcinoma, Hepatocellular , Extracellular Vesicles , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Cell Line, Tumor , Extracellular Vesicles/metabolism , Cell Communication
18.
J Am Chem Soc ; 145(37): 20521-20529, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37672393

ABSTRACT

Chalcogens, especially tellurium (Te), as conversion-type cathodes possess promising prospects for zinc batteries (ZBs) with potential rich valence supply and high energy density. However, the conversion reaction of Te is normally restricted to the Te2-/Te0 redox with a low voltage plateau at ∼0.59 V (vs Zn2+/Zn) rather than the expected positive valence conversion of Te0 to Ten+, inhibiting the development of Te-based batteries toward high output voltage and energy density. Herein, the desired reversible Te2-/Te0/Te2+/Te4+ redox behavior with up to six-electron transfer was successfully activated by employing a highly concentrated Cl--containing electrolyte (Cl- as strong nucleophile) for the first time. Three flat discharge plateaus located at 1.24, 0.77, and 0.51 V, respectively, are attained with a total capacity of 802.7 mAh g-1. Furthermore, to improve the stability of Ten+ products and enhance the cycling stability, a modified ionic liquid (IL)-based electrolyte was fabricated, leading to a high-performance Zn∥Te battery with high areal capacity (7.13 mAh cm-2), high energy density (542 Wh kgTe-1 or 227 Wh Lcathdoe+anode-1), excellent cycling performance, and a low self-discharge rate based on 400 mAh-level pouch cell. The results enhance the understanding of tellurium chemistry in batteries, substantially promising a remarkable route for advanced ZBs.

19.
Blood ; 137(12): 1603-1614, 2021 03 25.
Article in English | MEDLINE | ID: mdl-32967010

ABSTRACT

The initiation and progression of diffuse large B-cell lymphoma (DLBCL) is governed by genetic and epigenetic aberrations. As the most abundant eukaryotic messenger RNA (mRNA) modification, N6-methyladenosine (m6A) is known to influence various fundamental bioprocesses by regulating the target gene; however, the function of m6A modifications in DLBCL is unclear. PIWI-interacting RNAs (piRNAs) have been indicated to be epigenetic effectors in cancer. Here, we show that high expression of piRNA-30473 supports the aggressive phenotype of DLBCL, and piRNA-30473 depletion decreases proliferation and induces cell cycle arrest in DLBCL cells. In xenograft DLBCL models, piRNA-30473 inhibition reduces tumor growth. Moreover, piRNA-30473 is significantly associated with overall survival in a univariate analysis and is statistically significant after adjusting for the National Comprehensive Cancer Network-International Prognostic Index in the multivariate analysis. Additional studies demonstrate that piRNA-30473 exerts its oncogenic role through a mechanism involving the upregulation of WTAP, an m6A mRNA methylase, and thus enhances the global m6A level. Integrating transcriptome and m6A-sequencing analyses reveals that WTAP increases the expression of its critical target gene, hexokinase 2 (HK2), by enhancing the HK2 m6A level, thereby promoting the progression of DLBCL. Together, the piRNA-30473/WTAP/HK2 axis contributes to tumorigenesis by regulating m6A RNA methylation in DLBCL. Furthermore, by comprehensively analyzing our clinical data and data sets, we discover that the m6A regulatory genes piRNA-30473 and WTAP improve survival prediction in DLBCL patients. Our study highlights the functional importance of the m6A modification in DLBCL and might assist in the development of a prognostic stratification and therapeutic approach for DLBCL.


Subject(s)
Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Lymphoma, Large B-Cell, Diffuse/genetics , RNA, Small Interfering/genetics , Epigenesis, Genetic , Humans , Lymphoma, Large B-Cell, Diffuse/diagnosis , Methyltransferases/genetics , Prognosis , RNA, Messenger/genetics
20.
Phys Chem Chem Phys ; 25(17): 12125-12133, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37070289

ABSTRACT

The thermoelectric performance of the CuSbS2 monolayer is determined using the relaxation times obtained from electron-phonon coupling calculations and the transport properties of phonons and electrons. Based on the fully relaxed structure, the lattice thermal conductivity and the electronic transport coefficients are evaluated by solving the Boltzmann transport equation for phonons and electrons under relaxation time approximation, respectively. The tendencies of the transport coefficients depending on the carrier concentrations and temperatures are studied to understand the thermoelectric performance. Based on the bipolar effect, the transport coefficients and intrinsic carrier concentrations, we determined the dimensionless figure of merit ZT in the 300-800 K range. The results demonstrate that the CuSbS2 monolayer should be an p-type semiconductor, and the maximum ZT of 1.36 is obtained, indicating that the monolayer is a good candidate for high-temperature thermoelectric devices. Substantial bipolar effects are observed, and the ones in the x-direction are stronger in comparison to those in the y-direction, which is responsible for the smaller ZT in the x-direction.

SELECTION OF CITATIONS
SEARCH DETAIL