Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Environ Sci (China) ; 108: 22-32, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34465434

ABSTRACT

In this study, three magnetic flocculants with different chelating groups, namely, carboxymethyl chitosan-modified Fe3O4 flocculant (MC), acrylamide-grafted magnetic carboxymethyl chitosan flocculant (MCM), and 2-acrylamide-2-methylpropanesulfonic acid copolyacrylamide-grafted magnetic carboxymethyl chitosan flocculant (MCAA) were prepared, synthesized, and characterized by photopolymerization technology. They were applied to the flocculation removal of Cr(III), Co(II), and Pb(II). The effect of flocculation condition on the removal performance of Cr(III), Co(II), and Pb(II) was studied. Characterization results show that the three magnetic carboxymethyl chitosan-based flocculants have been successfully prepared with good magnetic induction properties. Flocculation results show that the removal rates of MC, MCM, and MCAA on Cr(III) are 51.79%, 82.33%, and 91.42%, respectively, under the conditions of 80 mg/L flocculant, pH value of 6, reaction time of 1.5 hr, G value of 200 s-1, and precipitation magnetic field strength of 120 mT. The removal rates of Co(II) by MC, MCM, and MCAA are 54.33%, 84.99%, and 90.49%, respectively. The removal rates of Pb(II) by MC, MCM, and MCAA are 61.54%, 91.32%, and 95.74%, respectively. MCAA shows good flocculation performance in composite heavy metal-simulated wastewater. The magnetic carboxymethyl chitosan-based flocculant shows excellent flocculation performance in removing soluble heavy metals. This research provides guidance and ideas for the development of efficient and low-cost flocculation technology to remove heavy metals in wastewater.


Subject(s)
Chitosan , Metals, Heavy , Flocculation , Magnetic Phenomena , Wastewater
2.
J Environ Manage ; 248: 109241, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31306928

ABSTRACT

Carboxylated chitosan (CPCTS) is used as substrates in the design and synthesis of CPCTS-based flocculants through UV-initiated polymerization techniques. The synthesized flocculants are applied to remove Cr and Ni ions from chromic acid lotion and electroplating wastewater through two-stage flocculation. This study investigates the effect of flocculant dosage, pH, reaction time, and stirring speed on the removal efficiency of Cr and Ni ions. Results indicated that the total Cr removal ratios by CPCTS-graft-polyacrylamide-co-sodium xanthate (CAC) and CPCTS-graft-poly [acrylamide-2-Acrylamido-2-methylpropane sulfonic acid] (CPCTS-g-P(AM-AMPS)) are 94.7% and 94.6%, respectively. The total Ni removal efficiencies by CAC and CPCTS-g-P(AM-AMPS) are 99.3% and 99.4%, respectively. The two-stage flocculation with CPCTS-based flocculants could reduce the total concentrations of Cr and Ni to 1.0 mg/L and 0.5 mg/L, respectively. The relationship of removal capacity and structural properties between the flocculants with different functional groups is established through Fourier transform infrared spectroscopy, nuclear magnetic resonance, scanning electron microscopy, and X-ray diffraction. The micro-interfacial behavior between the colloidal particles and the solution during the integrated chelation-flocculation are elucidated. Thus, CPCTS-based flocculants could be a potential material for the removal of high amounts of Cr and Ni ions in industrial wastewater.


Subject(s)
Chitosan , Wastewater , Chromium , Flocculation , Nickel
3.
Carbohydr Polym ; 261: 117891, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33766376

ABSTRACT

In this study, three magnetic flocculants, namely, MC, MC-g-PAM, and MC-g-PAA, were prepared. The structure characteristics, flocculation performance, and floc characteristics of the three magnetic flocculants were systematically studied and compared. SEM, FT-IR, XPS, XRD, TG-DSC, and VSM characterization results show that MC, MC-g-PAM, and MC-g-PAA are successfully prepared and exhibit good magnetic induction. The removal rates of copper ions by MC, MC-g-PAM, and MC-g-PAA under the optimal coagulation conditions are 93.39 %, 88.64 %, and 61.41 %, respectively. Kinetic fitting shows that the flocculation reaction process of MC and MC-g-PAM conforms to pseudo first-order kinetics, while the flocculation reaction process of MC-g-PAA conforms to pseudo second-order kinetics. The flocs produced by MC-g-PAA have larger particle size and fractal dimension than those by MC and MC-g-PAM. At 80 mg/L dosage and pH 6, the floc size and floc fractal dimension obtained by MC-g-PAA reach the maximum values of 48.28 um and 1.468, respectively. Zeta potential studies show that the flocculation functions of the three flocculants are mainly adsorption bridging, adsorption electric neutralization, and chelating precipitation. Recycling experiments show that MC-g-PAA has good recyclability, and the recovery rate after the fifth use is 77.24 % with the Cu(II) removal rate of 67.53 %.

4.
Water Environ Res ; 91(8): 756-769, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30912206

ABSTRACT

Ti-Sb/attapulgite ceramsite particle electrodes were prepared for the efficient degradation of chloramphenicol (CAP) in wastewater. To observe the surface morphology and structural characteristics of the Ti-Sb/attapulgite ceramsite particle electrodes, Fourier transform infrared spectroscopy, X-ray fluorescence, scanning electron microscopy, and X-ray diffraction were used for characterization. Parameters affecting the degradation efficiency and the energy consumption of the Ti-Sb/attapulgite ceramsite particle electrodes, such as current density, electrode distance, initial pH, conductivity, air flow, and packing ratio, were examined. Results showed that the optimal conditions were 20 mA/cm2 current intensity, 3 cm electrode distance, 5,000 µS/cm conductivity, 2.0 L/min air flow, 50.0% packing ratio, and initial pH 1. The removal efficiency of chloramphenicol was 73.7% under the optimal conditions, and the energy consumption was 191.3 (kW h)/kg CAP. PRACTITIONER POINTS: Attapulgite ceramsite with good physical performance was prepared. The removal efficiencies for CAP in water by Ti-Sb/attapulgite ceramsite particle electrodes were studied. CAP was effectively removed by 3-D electrode system. CAP removal was significantly influenced by operational parameters. Three-dimensional electrode system shows good degradation ability.


Subject(s)
Antimony/chemistry , Chloramphenicol/chemistry , Magnesium Compounds/chemistry , Silicon Compounds/chemistry , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Electrodes , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL