Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Appl Microbiol Biotechnol ; 100(5): 2417-27, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26549238

ABSTRACT

The feasibility of the anaerobic ammonium oxidation (anammox) process to treat synthetic swine wastewater containing antibiotics and heavy metals was studied in this work. Nitrogen removal performance and granule characteristics were tracked by continuous-flow monitoring to evaluate the long-term joint effects of Cu and Zn and of Cu and oxytetracycline (OTC). Cu and Zn with a joint loading rate (JLR) of 0.04 kg m(-3) day(-1) did not affect the performance, while a JLR of 0.12 kg m(-3) day(-1) caused a rapid collapse in performance. Cu and OTC addition with a JLR of 0.04 kg m(-3) day(-1) for approximately 2 weeks induced significant nitrite accumulation. Granule characteristic analysis elucidated the disparate inhibition mechanisms of heavy metals and antibiotics: the internalization of heavy metals caused metabolic disorders, whereas OTC functioned as a growth retarder. However, anammox reactors could adapt to a JLR of 0.04 kg m(-3) day(-1) via self-regulation during the acclimatization to subinhibitory concentrations, which had a stable nitrogen removal rate (>8.5 kg m(-3) day(-1)) and removal rate efficiency (>75 %) for reactors with Cu-OTC addition. Therefore, this study supports the great potential of using anammox granules to treat swine wastewater.


Subject(s)
Ammonia/metabolism , Anti-Bacterial Agents/metabolism , Metals, Heavy/metabolism , Microbial Consortia/drug effects , Wastewater/microbiology , Anaerobiosis , Animals , Oxidation-Reduction , Swine , Time , Water Purification
2.
Nanomaterials (Basel) ; 12(9)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35564151

ABSTRACT

With the fast development of industry and nuclear energy, large amounts of different radionuclides are inevitably released into the environment. The efficient solidification or elimination of radionuclides is thereby crucial to environmental pollution and human health because of the radioactive hazardous of long-lived radionuclides. The properties of negatively or positively charged radionuclides are quite different, which informs the difficulty of simultaneous elimination of the radionuclides. Herein, we summarized recent works about the selective sorption or catalytic reduction of target radionuclides using different kinds of nanomaterials, such as carbon-based nanomaterials, metal-organic frameworks, and covalent organic frameworks, and their interaction mechanisms are discussed in detail on the basis of batch sorption results, spectroscopy analysis and computational calculations. The sorption-photocatalytic/electrocatalytic reduction of radionuclides from high valent to low valent is an efficient strategy for in situ solidification/immobilization of radionuclides. The special functional groups for the high complexation of target radionuclides and the controlled structures of nanomaterials can selectively bind radionuclides from complicated systems. The challenges and future perspective are finally described, summarized, and discussed.

3.
Anim Cells Syst (Seoul) ; 26(6): 300-309, 2022.
Article in English | MEDLINE | ID: mdl-36605584

ABSTRACT

Glycogen storage disease type Ia (GSD-Ia) is caused by a deficiency in the glucose-6-phosphatase (G6Pase, G6pc) enzyme, which catalyses the final step of gluconeogenesis and glycogenolysis. Accumulation of G6pc can lead to an increase in glycogen and development of fatty liver. Ductular reactions refer to the proliferation of cholangiocytes and hepatic progenitors, which worsen fatty liver progress. To date, however, ductular reactions in GSD-Ia remain poorly understood. Here, we studied the development and potential underlying mechanism of ductular reactions in GSD-Ia in mice. We first generated GSD-Ia mice using CRISPR/Cas9 to target the exon 3 region of the G6pc gene. The typical GSD-Ia phenotype in G6pc -/- mice was then analysed using biochemical and histological assays. Ductular reactions in G6pc -/- mice were tested based on the expression of cholangiocytic markers cytokeratin 19 (CK19) and epithelial cell adhesion molecule (EpCAM). Yes-associated protein 1 (Yap) signalling activity was measured using western blot (WB) analysis and quantitative real-time polymerase chain reaction (qRT-PCR). Verteporfin was administered to the G6pc -/- mice to inhibit Yap signalling. The CRISPR/Cas9 system efficiently generated G6pc -/- mice, which exhibited typical GSD-Ia characteristics, including retarded growth, hypoglycaemia, and fatty liver disease. In addition, CK19- and EpCAM-positive cells as well as Yap signalling activity were increased in the livers of G6pc -/- mice. However, verteporfin treatment ameliorated ductular reactions and decreased Yap signalling activity. This study not only improves our understanding of GSD-Ia pathophysiology, but also highlights the potential of novel therapeutic approaches for GSD-Ia such as drug targeting of ductular reactions.

4.
Environ Pollut ; 233: 125-131, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29059627

ABSTRACT

Graphene oxide (GO) may strongly interact with toxic metal ions and mineral particles upon release into the soil environment. We evaluated the mutual effects between GO and Ni (Ni(II)) with regard to their adsorption and co-adsorption on two minerals (goethite and hematite) in aqueous phase. Results indicated that GO and Ni could mutually facilitate the adsorption of each other on both goethite and hematite over a wide pH range. Addition of Ni promoted GO co-adsorption mainly due to the increased positive charge of minerals and cation-π interactions, while the presence of GO enhanced Ni co-adsorption predominantly due to neutralization of positive charge and strong interaction with oxygen-containing functional groups on adsorbed GO. Increasing adsorption of GO and Ni on minerals as they coexist may thus reduce their mobility in soil. Extended X-ray absorption fine structure (EXAFS) spectroscopy data revealed that GO altered the microstructure of Ni on minerals, i.e., Ni formed edge-sharing surface species (at RNi-Fe∼3.2 Å) without GO, while a GO-bridging ternary surface complexes (at RNi-C∼2.49 Å and RNi-Fe∼4.23 Å) was formed with GO. These findings improved the understanding of potential fate and toxicity of GO as well as the partitioning processes of Ni ions in aquatic and soil environments.


Subject(s)
Ferric Compounds/chemistry , Graphite/chemistry , Models, Chemical , Nickel/chemistry , Adsorption , Iron Compounds , Minerals , Oxides , Soil , Spectrum Analysis , Water/chemistry , X-Rays
5.
J Hazard Mater ; 336: 214-221, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28494309

ABSTRACT

Herein, a promising titanate nanotubes (TNT) anchored nanoscale zero-valent iron (NZVI) nanocomposite (NZVI/TNT) was synthesized, characterized and used for the enhanced scavenging of Cr(VI) and Se(VI) from water. The structural identification indicated that NZVI was uniformly loaded on TNT, thereby, the oxidation and aggregation of NZVI was significantly minimized. The macroscopic experimental results indicated that NZVI/TNT exhibited higher efficiency as well as rate on Cr(VI) and Se(VI) scavenging resulted from the good synergistic effect between adsorption and reduction. Besides, TNT can weaken the inhibitory effect of co-existing humic acid (HA) and fulvic acid (FA) on the scavenging of Cr(VI) and Se(VI) by NZVI, since TNT showed strong adsorption for HA and FA that inhibit potential reactivity. XPS analysis suggested that surface-bound Fe(II) played a critical role in Cr(VI) and Se(VI) scavenging. XANES analysis demonstrated that TNT acted as a promoter for the almost complete transformation of Cr(VI) into Cr(III), and Se(VI) into Se(0)/Se(-II) in NZVI system. EXAFS analysis indicated that TNT acted as a scavenger for insoluble products, and thus more reactive sites can be used for Cr(VI) and Se(VI) reduction. The excellent performance of NZVI/TNT provide a potential material for purification and detoxification of Cr(VI) and Se(VI) from wastewater.

6.
Anal Chim Acta ; 620(1-2): 82-8, 2008 Jul 14.
Article in English | MEDLINE | ID: mdl-18558127

ABSTRACT

A novel sequential injection method for the determination of nitrite at nanomolar level in seawater samples has been developed. The pink azo compound was formed based on the Griess reaction and quantitatively adsorbed onto a Sep-Pak C18 cartridge. The enriched azo compound was rinsed with water and ethanol (28%, v/v) in turn, and then eluted with an eluent containing 26.6% (v/v) ethanol and 0.108 mol L(-1) H(2)SO(4). Finally the azo compound was measured using a spectrophotometer at 543 nm. Under the optimized conditions, the linear calibration ranges were 0.71-42.9 nmol L(-1) for a 150-mL sample and 35.7-429 nmol L(-1) for a 15-mL sample. The relative standard deviation of 8 measurements was 1.44% for 14.3 nmol L(-1) nitrite. For the 150 mL sample, the detection limit was estimated to be 0.1 nmol L(-1). The throughput of the method was about 4 samples per hour. The proposed method has been successfully applied to the in-field determination of nanomolar concentrations of nitrite in seawater.


Subject(s)
Colorimetry/methods , Flow Injection Analysis/instrumentation , Flow Injection Analysis/methods , Nanostructures/chemistry , Nitrates/analysis , Nitrates/chemistry , Seawater/chemistry , Chemical Phenomena , Chemistry, Physical , Colorimetry/instrumentation , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL