Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 305
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(22): e2220148120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216506

ABSTRACT

Exploring the potential lead compounds for Alzheimer's disease (AD) remains one of the challenging tasks. Here, we report that the plant extract conophylline (CNP) impeded amyloidogenesis by preferentially inhibiting BACE1 translation via the 5' untranslated region (5'UTR) and rescued cognitive decline in an animal model of APP/PS1 mice. ADP-ribosylation factor-like protein 6-interacting protein 1 (ARL6IP1) was then found to mediate the effect of CNP on BACE1 translation, amyloidogenesis, glial activation, and cognitive function. Through analysis of the 5'UTR-targetd RNA-binding proteins by RNA pulldown combined with LC-MS/MS, we found that FMR1 autosomal homolog 1 (FXR1) interacted with ARL6IP1 and mediated CNP-induced reduction of BACE1 by regulating the 5'UTR activity. Without altering the protein levels of ARL6IP1 and FXR1, CNP treatment promoted ARL6IP1 interaction with FXR1 and inhibited FXR1 binding to the 5'UTR both in vitro and in vivo. Collectively, CNP exhibited a therapeutic potential for AD via ARL6IP1. Through pharmacological manipulation, we uncovered a dynamic interaction between FXR1 and the 5'UTR in translational control of BACE1, adding to the understanding of the pathophysiology of AD.


Subject(s)
Alzheimer Disease , Animals , Mice , 5' Untranslated Regions , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Chromatography, Liquid , Fragile X Mental Retardation Protein/genetics , Protein Biosynthesis , Tandem Mass Spectrometry
2.
Traffic ; 24(1): 20-33, 2023 01.
Article in English | MEDLINE | ID: mdl-36412210

ABSTRACT

AP2S1 is the sigma 2 subunit of adaptor protein 2 (AP2) that is essential for endocytosis. In this study, we investigated the potential role of AP2S1 in intracellular processing of amyloid precursor protein (APP), which contributes to the pathogenesis of Alzheimer disease (AD) by generating the toxic ß-amyloid peptide (Aß). We found that knockdown or overexpression of AP2S1 decreased or increased the protein levels of APP and Aß in cells stably expressing human full-length APP695, respectively. This effect was unrelated to endocytosis but involved lysosomal degradation. Morphological studies revealed that silencing of AP2S1 promoted the translocalization of APP from RAB9-positive late endosomes (LE) to LAMP1-positive lysosomes, which was paralleled by the enhanced LE-lysosome fusion. In support, silencing of vacuolar protein sorting-associated protein 41 (VPS41) that is implicated in LE-lyso fusion prevented AP2S1-mediated regulation of APP degradation and translocalization. In APP/PS1 mice, an animal model of AD, AAV-mediated delivery of AP2S1 shRNA in the hippocampus significantly reduced the protein levels of APP and Aß, with the concomitant APP translocalization, LE-lyso fusion and the improved cognitive functions. Taken together, these data uncover a LE-lyso fusion mechanism in APP degradation and suggest a novel role for AP2S1 in the pathophysiology of AD.


Subject(s)
Adaptor Protein Complex sigma Subunits , Alzheimer Disease , Mice , Humans , Animals , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Endosomes/metabolism , Lysosomes/metabolism , Amyloid Precursor Protein Secretases/metabolism , Adaptor Protein Complex 2/metabolism , Adaptor Protein Complex sigma Subunits/metabolism , rab GTP-Binding Proteins/metabolism
3.
J Biol Chem ; 300(8): 107530, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971310

ABSTRACT

Microsomal glutathione transferase 3 (MGST3) regulates eicosanoid and glutathione metabolism. These processes are associated with oxidative stress and apoptosis, suggesting that MGST3 might play a role in the pathophysiology of Alzheimer's disease. Here, we report that knockdown (KD) of MGST3 in cell lines reduced the protein level of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and the resulting amyloidogenesis. Interestingly, MGST3 KD did not alter intracellular reactive oxygen species level but selectively reduced the expression of apoptosis indicators which could be associated with the receptor of cysteinyl leukotrienes, the downstream metabolites of MGST3 in arachidonic acid pathway. We then showed that the effect of MGST3 on BACE1 was independent of cysteinyl leukotrienes but involved a translational mechanism. Further RNA-seq analysis identified that regulator of G-protein signaling 4 (RGS4) was a target gene of MGST3. Silencing of RGS4 inhibited BACE1 translation and prevented MGST3 KD-mediated reduction of BACE1. The potential mechanism was related to AKT activity, as the protein level of phosphorylated AKT was significantly reduced by silencing of MGST3 and RGS4, and the AKT inhibitor abolished the effect of MGST3/RGS4 on phosphorylated AKT and BACE1. Together, MGST3 regulated amyloidogenesis by controlling BACE1 protein expression, which was mediated by RGS4 and downstream AKT signaling pathway.


Subject(s)
Amyloid Precursor Protein Secretases , Aspartic Acid Endopeptidases , Glutathione Transferase , Protein Biosynthesis , Proto-Oncogene Proteins c-akt , RGS Proteins , Signal Transduction , RGS Proteins/metabolism , RGS Proteins/genetics , Humans , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/genetics , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Apoptosis , Amyloid beta-Peptides/metabolism , Animals
4.
J Biol Chem ; 299(9): 105150, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37567473

ABSTRACT

Folding of the Repeats-in-toxin (RTX) domain of the bacterial adenylate cyclase toxin-hemolysin (CyaA) is critical to its toxin activities and the virulence of the whooping cough agent Bordetella pertussis. The RTX domain (RD) contains five RTX blocks (RTX-i to RTX-v) and their folding is driven by the binding of calcium. However, the detailed molecular mechanism via which the folding signal transmits within the five RTX blocks remains unknown. By combining single molecule optical tweezers, protein engineering, and toxin activity assays, here we demonstrate that the folding of the RD follows a strict hierarchy, with the folding starting from its C-terminal block RTX-v and proceeding towards the N-terminal RTX-i block sequentially. Our results reveal a strict series, templated folding mechanism, where the folding signal is transmitted along the RD in a series fashion from its C terminus continuously to the N terminus. Due to the series nature of this folding signal transmission pathway, the folding of RD can be disrupted at any given RTX block, rendering the RTX blocks located N-terminally to the disruption site and the acylation region of CyaA unfolded and abolishing CyaA's toxin activities. Our results reveal key mechanistic insights into the secretion and folding process of CyaA and may open up new potential avenues towards designing new therapeutics to abolish toxin activity of CyaA and combat B. pertussis.

5.
Environ Sci Technol ; 58(25): 11003-11015, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38807562

ABSTRACT

Labile organic matter (OM) immobilized by secondary iron (Fe) minerals from chemodenitrification may be an effective way to immobilize organic carbon (OC). However, the underlying mechanisms of coupled chemodenitrification and OC sequestration are poorly understood. Here, OM immobilization by secondary Fe minerals from chemodenitrification was investigated at different C/Fe ratios. Kinetics of Fe(II) oxidation and nitrite reduction rates decreased with increasing C/Fe ratios. Despite efficient sequestration, the immobilization efficiency of OM by secondary minerals varied with the C/Fe ratios. Higher C/Fe ratios were conducive to the formation of ferrihydrite and lepidocrocite, with defects and nanopores. Three contributions, including inner-core Fe-O and edge- and corner-shared Fe-Fe interactions, constituted the local coordination environment of mineral-organic composites. Microscopic analysis at the molecular scale uncovered that labile OM was more likely to combine with secondary minerals with poor crystallinity to enhance its stability, and OM distributed within nanopores and defects had a higher oxidation state. After chemodenitrification, high molecular weight substances and substances high in unsaturation or O/C ratios including phenols, polycyclic aromatics, and carboxylic compounds exhibited a stronger affinity to Fe minerals in the treatments with lower C/Fe ratios. Collectively, labile OM immobilization can occur during chemodenitrification. The findings on OM sequestration coupled with chemodenitrification have significant implications for understanding the long-term cycling of Fe, C, and N, providing a potential strategy for OM immobilization in anoxic soils and sediments.


Subject(s)
Iron , Minerals , Minerals/chemistry , Iron/chemistry , Oxidation-Reduction , Carbon/chemistry , Kinetics
6.
Mol Biol Rep ; 51(1): 484, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578353

ABSTRACT

BACKGROUND: Mitochondrial Ts translation elongation factor (TSFM) is an enzyme that catalyzes exchange of guanine nucleotides. By forming a complex with mitochondrial Tu translation elongation factor (TUFM), TSFM participates in mitochondrial protein translation. We have previously reported that TUFM regulates translation of beta-site APP cleaving enzyme 1 (BACE1) via ROS (reactive oxygen species)-dependent mechanism, suggesting a potential role in amyloid precursor protein (APP) processing associated with Alzheimer's disease (AD), which led to the speculation that TSFM may regulate APP processing in a similar way to TUFM. METHODS AND RESULTS: Here, we report that in cultured cells, knockdown or overexpression TSFM did not change protein levels in BACE1 and APP. Besides, the levels of cytoplasmic ROS and mitochondrial superoxide, in addition to ATP level, cell viability and mitochondrial membrane potential were not significantly altered by TSFM knockdown in the short term. Further transcriptome analysis revealed that expression of majority of mitochondrial genes were not remarkably changed by TSFM silencing. The possibility of TSFM involved in cardiomyopathy and cancer development was uncovered using bioinformatics analysis. CONCLUSIONS: Collectively, short-term regulation of TSFM level in cultured cells does not cause a significant change in proteins involved in APP processing, levels in ROS and ATP associated with mitochondrial function. Whereas our study could contribute to comprehend certain clinical features of TSFM mutations, the roles of TSFM in cardiomyopathy and cancer development might deserve further investigation.


Subject(s)
Alzheimer Disease , Cardiomyopathies , Neoplasms , Humans , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Reactive Oxygen Species/metabolism , Aspartic Acid Endopeptidases/genetics , Alzheimer Disease/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Neoplasms/metabolism , Cardiomyopathies/metabolism , Peptide Elongation Factors/metabolism , Adenosine Triphosphate , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
7.
Clin Exp Nephrol ; 28(9): 882-893, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38584195

ABSTRACT

BACKGROUND: Serum lactate dehydrogenase to albumin ratio (LAR) is associated with poor outcomes in malignancy and pneumonia. However, there are few studies suggesting that LAR is associated with the occurrence of acute kidney injury (AKI) in patients with sepsis, which was investigated in this study. METHODS: We conducted a retrospective cohort study based on the Medical Information Mart for Intensive Care (MIMIC)-IV database. The primary outcome was the occurrence of AKI within 2 days and 7 days. Multivariable logistic regression models were used to calculate odds ratios to validate the association between LAR and AKI, in-hospital mortality, RRT use, and recovery of renal function, respectively. RESULTS: A total of 4010 participants were included in this study. The median age of the participants was 63.5 years and the median LAR was 10.5. After adjusting for confounding variables, patients in the highest LAR quartile had a higher risk of AKI than those in the lowest LAR quartile within 2 days and 7 days, with odds ratios of 1.37 (95% confidence interval [CI]: 1.23-1.52) and 1.95 (95% CI: 1.72-2.22), respectively. The adjusted odds of AKI within 2 and 7 days were 1.16 (95% CI: 1.12-1.20) and 1.29 (95% CI: 1.24-1.35) for each 1 unit increase in LAR(log2), respectively. CONCLUSION: This study demonstrated that elevated LAR was associated with poor prognosis in patients with sepsis. The risk of AKI and in-hospital mortality increased, the need for RRT increased, and the chance of recovery of renal function decreased with the increase of LAR.


Subject(s)
Acute Kidney Injury , Hospital Mortality , Sepsis , Humans , Acute Kidney Injury/blood , Acute Kidney Injury/mortality , Acute Kidney Injury/diagnosis , Retrospective Studies , Male , Middle Aged , Female , Sepsis/complications , Sepsis/blood , Aged , L-Lactate Dehydrogenase/blood , Biomarkers/blood , Risk Factors , Serum Albumin, Human/analysis , Renal Replacement Therapy
8.
Sensors (Basel) ; 24(17)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39275632

ABSTRACT

To accurately estimate the 6D pose of objects, most methods employ a two-stage algorithm. While such two-stage algorithms achieve high accuracy, they are often slow. Additionally, many approaches utilize encoding-decoding to obtain the 6D pose, with many employing bilinear sampling for decoding. However, bilinear sampling tends to sacrifice the accuracy of precise features. In our research, we propose a novel solution that utilizes implicit representation as a bridge between discrete feature maps and continuous feature maps. We represent the feature map as a coordinate field, where each coordinate pair corresponds to a feature value. These feature values are then used to estimate feature maps of arbitrary scales, replacing upsampling for decoding. We apply the proposed implicit module to a bidirectional fusion feature pyramid network. Based on this implicit module, we propose three network branches: a class estimation branch, a bounding box estimation branch, and the final pose estimation branch. For this pose estimation branch, we propose a miniature dual-stream network, which estimates object surface features and complements the relationship between 2D and 3D. We represent the rotation component using the SVD (Singular Value Decomposition) representation method, resulting in a more accurate object pose. We achieved satisfactory experimental results on the widely used 6D pose estimation benchmark dataset Linemod. This innovative approach provides a more convenient solution for 6D object pose estimation.

9.
J Environ Sci (China) ; 138: 19-31, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38135388

ABSTRACT

Zero-valent iron (ZVI) is a promising material for the remediation of Cd-contaminated paddy soils. However, the effects of ZVI added during flooding or drainage processes on cadmium (Cd) retention remain unclear. Herein, Cd-contaminated paddy soil was incubated for 40 days of flooding and then for 15 days of drainage, and the underlying mechanisms of Cd immobilization coupled with Fe/S/N redox processes were investigated. The addition of ZVI to the flooding process was more conducive to Cd immobilization. Less potential available Cd was detected by adding ZVI before flooding, which may be due to the increase in paddy soil pH and newly formed secondary Fe minerals. Moreover, the reductive dissolution of Fe minerals promoted the release of soil colloids, thereby increasing significantly the surface sites and causing Cd immobilization. Additionally, the addition of ZVI before flooding played a vital role in Cd retention after soil drainage. In contrast, the addition of ZVI in the drainage phase was not conducive to Cd retention, which might be due to the rapid decrease in soil pH that inhibited Cd adsorption and further immobilization on soil surfaces. The findings of this study demonstrated that Cd availability in paddy soil was largely reduced by adding ZVI during the flooding period and provide a novel insight into the mechanisms of ZVI remediation in Cd-contaminated paddy soils.


Subject(s)
Oryza , Soil Pollutants , Cadmium/analysis , Iron , Soil , Soil Pollutants/analysis , Minerals
10.
Diabetes Obes Metab ; 25(3): 664-674, 2023 03.
Article in English | MEDLINE | ID: mdl-36314246

ABSTRACT

AIM: To assess the efficacy and safety of liraglutide to reduce visceral and ectopic fat in adults with or without type 2 diabetes mellitus (T2DM). METHODS: Four databases were searched up to 6 May 2022 for randomized clinical trials assessing the effect of liraglutide on visceral and ectopic fat. The mean and standard deviation of the values of visceral fat, ectopic fat and body mass index were calculated. Subgroup analyses were performed based on the type of disease (T2DM or non-T2DM), duration of intervention, dosage of liraglutide and whether life interventions were added to liraglutide therapy. We extracted and integrated the safety assessments reported in each article. RESULTS: Sixteen randomized clinical trials with, in total, 845 participants were included in the meta-analysis. Liraglutide could significantly decrease visceral fat [standard mean difference (SMD) = -0.72, 95% confidence interval (CI; -1.12, -0.33)], liver fat [SMD = -0.78, 95% CI (-1.24, -0.32)] and body mass index [weighted mean difference = -1.44, 95% CI (-1.95, -0.92)] in adult patients with or without T2DM when compared with the control group. However, reduction of epicardial fat by liraglutide [SMD = -0.74, 95% CI (-1.82, 0.34)] was not statistically significant. Subgroup analysis revealed that an adequate dosage (≥1.8 mg/day) and appropriate duration of treatment (ranging from 16 to 40 weeks) were the decisive factors for liraglutide to reduce visceral fat effectively. Mild gastrointestinal reactions were the main adverse event of liraglutide. CONCLUSIONS: Liraglutide significantly and safely reduces visceral and ectopic liver fat irrespective of T2DM status, and reduces visceral fat provided adequate dosage and duration of therapy are ensured.


Subject(s)
Diabetes Mellitus, Type 2 , Liraglutide , Adult , Humans , Liraglutide/adverse effects , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/chemically induced , Liver , Body Mass Index , Adipose Tissue , Hypoglycemic Agents/adverse effects , Randomized Controlled Trials as Topic
11.
Eur Radiol ; 33(10): 6771-6780, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37133521

ABSTRACT

OBJECTIVES: Blood flow into the side branch affects the calculation of coronary angiography-derived fractional flow reserve (FFR), called Angio-FFR. Neglecting or improperly compensating for the side branch flow may decrease the diagnostic accuracy of Angio-FFR. This study aims to evaluate the diagnostic accuracy of a novel Angio-FFR analysis that considers the side branch flow based on the bifurcation fractal law. METHODS: A one-dimensional reduced-order model based on the vessel segment was used to perform Angio-FFR analysis. The main epicardial coronary artery was divided into several segments according to the bifurcation nodes. Side branch flow was quantified using the bifurcation fractal law to correct the blood flow in each vessel segment. In order to verify the diagnostic performance of our Angio-FFR analysis, two other computational methods were taken as control groups: (i) FFR_s: FFR calculated by delineating the coronary artery tree to consider side branch flow, (ii) FFR_n: FFR calculated by just delineating the main epicardial coronary artery and neglecting the side branch flow. RESULTS: The analysis of 159 vessels from 119 patients showed that our Anio-FFR calculation method had comparable diagnostic accuracy to FFR_s and provided significantly higher diagnostic accuracy than that of FFR_n. In addition, using invasive FFR as a reference, the Pearson correlation coefficients of Angio-FFR and FFRs were 0.92 and 0.91, respectively, while that of FFR_n was only 0.85. CONCLUSIONS: Our Angio-FFR analysis has demonstrated good diagnostic performance in assessing the hemodynamic significance of coronary stenosis by using the bifurcation fractal law to compensate for side branch flow. CLINICAL RELEVANCE STATEMENT: Bifurcation fractal law can be used to compensate for side branch flow during the Angio-FFR calculation of the main epicardial vessel. Compensating for side branch flow can improve the ability of Angio-FFR to diagnose stenosis functional severity. KEY POINTS: • The bifurcation fractal law could accurately estimate the blood flow from the proximal main vessel into the main branch, thus compensating for the side branch flow. • Angiography-derived FFR based on the bifurcation fractal law is feasible to evaluate the target diseased coronary artery without delineating the side branch.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Humans , Fractional Flow Reserve, Myocardial/physiology , Fractals , Coronary Angiography/methods , Hemodynamics , Coronary Vessels/diagnostic imaging , Severity of Illness Index , Predictive Value of Tests
12.
Environ Sci Technol ; 57(46): 17920-17929, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37755710

ABSTRACT

Anions accompanying inorganic fertilizers, such as chloride and sulfate ions, potentially affect the solubility, uptake, and transport of Cd to rice grains. However, the role of anions in controlling Cd transport in the soil-soil solution-Fe plaque-rice plant continuum remains poorly understood. Cd isotope ratios were applied to Cd-contaminated soil pots, hydroponic rice, and adsorption experiments with or without KCl and K2SO4 treatments to decipher transport processes in the complex soil-rice system. The chloride and sulfate ions increased the Cd concentrations in the soil solution, Fe plaque, and rice plants. Accordingly, the magnitude of positive fractionation from soil to the soil solution was less pronounced, but that between soil and Fe plaque or rice plant is barely varied. The similar isotope composition of Fe plaque and soil, and the similar fractionation magnitude between Fe plaque and the solution and between goethite and the solution, suggested that desorption-sorption between iron oxides and the solution could be important at the soil-soil solution-Fe plaque continuum. This study reveals the roles of chloride and sulfate ions: (i) induce the mobility of light Cd isotopes from soil to the soil solution, (ii) chloro-Cd and sulfato-Cd complexes contribute to Cd immobilization in the Fe plaque and uptake into roots, and (iii) facilitate second leaves/node II-to-grain Cd transport within shoots. These results provide insights into the anion-induced Cd isotope effect in the soil-rice system and the roles of anions in facilitating Cd migration and transformation.


Subject(s)
Oryza , Soil Pollutants , Iron , Cadmium , Chlorides/pharmacology , Soil , Sulfates , Isotopes/pharmacology , Plant Roots/chemistry
13.
Environ Sci Technol ; 57(33): 12546-12555, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37535944

ABSTRACT

Microbially mediated nitrate reduction coupled with Fe(II) oxidation (NRFO) plays an important role in the Fe/N interactions in pH-neutral anoxic environments. However, the relative contributions of the chemical and microbial processes to NRFO are still unclear. In this study, N-O isotope fractionation during NRFO was investigated. The ratios of O and N isotope enrichment factors (18ε:15ε)-NO3- indicated that the main nitrate reductase functioning in Acidovorax sp. strain BoFeN1 was membrane-bound dissimilatory nitrate reductase (Nar). N-O isotope fractionation during chemodenitrification [Fe(II) + NO2-], microbial nitrite reduction (cells + NO2-), and the coupled process [cells + NO2- + Fe(II)] was explored. The ratios of (18ε:15ε)-NO2- were 0.58 ± 0.05 during chemodenitrification and -0.41 ± 0.11 during microbial nitrite reduction, indicating that N-O isotopes can be used to distinguish chemical from biological reactions. The (18ε:15ε)-NO2- of 0.70 ± 0.05 during the coupled process was close to that obtained for chemodenitrification, indicating that chemodenitrification played a more important role than biological reactions during the coupled process. The results of kinetic modeling showed that the relative contribution of chemodenitrification was 99.3% during the coupled process, which was consistent with that of isotope fractionation. This study provides a better understanding of chemical and biological mechanisms of NRFO using N-O isotopes and kinetic modeling.


Subject(s)
Comamonadaceae , Nitrates , Nitrites , Nitrogen Dioxide , Oxidation-Reduction , Organic Chemicals , Isotopes , Ferrous Compounds
14.
Proc Natl Acad Sci U S A ; 117(7): 3687-3692, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32029590

ABSTRACT

Despite the promise of immune checkpoint blockade (ICB) therapy against cancer, challenges associated with low objective response rates and severe systemic side effects still remain and limit its clinical applications. Here, we described a cold atmospheric plasma (CAP)-mediated ICB therapy integrated with microneedles (MN) for the transdermal delivery of ICB. We found that a hollow-structured MN (hMN) patch facilitates the transportation of CAP through the skin, causing tumor cell death. The release of tumor-associated antigens then promotes the maturation of dendritic cells in the tumor-draining lymph nodes, subsequently initiating T cell-mediated immune response. Anti-programmed death-ligand 1 antibody (aPDL1), an immune checkpoint inhibitor, released from the MN patch further augments the antitumor immunity. Our findings indicate that the proposed transdermal combined CAP and ICB therapy can inhibit the tumor growth of both primary tumors and distant tumors, prolonging the survival of tumor-bearing mice.


Subject(s)
Immunotherapy , Neoplasms/therapy , Plasma Gases/administration & dosage , Antibodies/administration & dosage , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , B7-H1 Antigen/immunology , Cell Line, Tumor , Cell Proliferation , Dendritic Cells/immunology , Humans , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/physiopathology , T-Lymphocytes/immunology
15.
Proc Natl Acad Sci U S A ; 117(47): 29512-29517, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33177238

ABSTRACT

Reduced ß-cell function and insulin deficiency are hallmarks of diabetes mellitus, which is often accompanied by the malfunction of glucagon-secreting α-cells. While insulin therapy has been developed to treat insulin deficiency, the on-demand supplementation of glucagon for acute hypoglycemia treatment remains inadequate. Here, we describe a transdermal patch that mimics the inherent counterregulatory effects of ß-cells and α-cells for blood glucose management by dynamically releasing insulin or glucagon. The two modules share a copolymerized matrix but comprise different ratios of the key monomers to be "dually responsive" to both hyper- and hypoglycemic conditions. In a type 1 diabetic mouse model, the hybrid patch effectively controls hyperglycemia while minimizing the occurrence of hypoglycemia in the setting of insulin therapy with simulated delayed meal or insulin overdose.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 1/drug therapy , Drug Delivery Systems/methods , Glucagon/administration & dosage , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Animals , Blood Glucose/analysis , Blood Glucose/drug effects , Blood Glucose/metabolism , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/diagnosis , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 1/diagnosis , Drug Combinations , Drug Compounding/methods , Drug Liberation , Drug Overdose/prevention & control , Glucagon/chemistry , Glucagon/pharmacokinetics , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacokinetics , Insulin/chemistry , Insulin/pharmacokinetics , Male , Mice , Polymerization , Solubility , Streptozocin , Transdermal Patch
16.
J Environ Sci (China) ; 125: 470-479, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36375930

ABSTRACT

The flooding and drainage of paddy fields has great effects on the transformation of heavy metals, however, the transformation of Cr in basalt-derived paddy soil with high geological background values was less recognized. The typical basalt-derived paddy soil was incubated under alternating redox conditions. The Cr fractions and the dynamics of Fe/N/S/C were examined. The HCl-extractable Cr increased under anaerobic condition and then decreased during aerobic stage. The UV-vis spectra of the supernatant showed that amounts of colloids were released under anaerobic condition, and then re-aggregated during aerobic phase. The scanning transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) revealed that Fe oxides were reduced and became dispersed during anaerobic stage, whereas Fe(II) was oxidized and recrystallized under aerobic condition. Based on these results, a kinetic model was established to further distinguish the relationship between the transformation of Cr and Fe. During anaerobic phase, the reduction of Fe(III) oxides not only directly released the structurally bound Cr, but also enhanced the breakdown of soil aggregation and dissolution of organic matter causing indirect mobilization of Cr. During aerobic phase, the oxidation of Fe(II) and further recrystallization of newly formed Fe(III) oxides might induce the re-aggregation of soil colloids and further incorporation of Cr. In addition, the kinetic model of Cr and Fe transformation was further verified in the pot experiment. The model-based findings demonstrated that the Cr transformation in the basalt-derived paddy soil with high geological background values was highly driven by redox sensitive iron cycling.


Subject(s)
Soil Pollutants , Soil , Soil/chemistry , Iron/chemistry , Chromium/analysis , Soil Pollutants/analysis , Oxidation-Reduction , Oxides/chemistry , Ferrous Compounds
17.
J Transl Med ; 20(1): 250, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35659682

ABSTRACT

Gastric cancer is a common type of gastrointestinal malignant tumor in China. The mechanism of the development and progression of gastric cancer remains the continuing research focus. The tumor microenvironment plays an important role in the development and progression of tumors. The present study used single-cell sequencing data to characterize the microenvironment of gastric cancer, investigate the effects of oxidative stress on gastric cancer microenvironmental cells through the comparison between cancer tissue and normal tissue, and identify the key genes associated with gastric cancer patients' survival. The results showed that compared with normal gastric tissue, gastric cancer tissue had a decreased oxidative stress response, weaker oxidative detoxification ability, and increased oxidative stress-induced cell death. In the different types of single cells of gastric cancer microenvironment, the oxidative stress response of T cell was increased, the ability of oxidative detoxification was enhanced, and the oxidative stress-induced cell death was exacerbate. Mucous cell showed the same trend as gastric cancer cells: decreased oxidative stress response, weak oxidative detoxification ability, and weakened oxidative stress-induced cell death. Moreover, TRIM62, MET, and HBA1, which were significantly associated with oxidative stress, may be biomarkers for the prognosis of gastric cancer. High expression of TRIM62 indicated a good prognosis, while MET and HBA1 indicated a poor prognosis, which will be confirmed by further clinical studies.


Subject(s)
Stomach Neoplasms , Tumor Microenvironment , Glycated Hemoglobin/metabolism , Humans , Oxidative Stress/genetics , Prognosis , Stomach Neoplasms/pathology , Tumor Microenvironment/genetics
18.
FASEB J ; 35(5): e21445, 2021 05.
Article in English | MEDLINE | ID: mdl-33774866

ABSTRACT

Mitochondrial Tu translation elongation factor (TUFM or EF-Tu) is part of the mitochondrial translation machinery. It is reported that TUFM expression is reduced in the brain of Alzheimer's disease (AD), suggesting that TUFM might play a role in the pathophysiology. In this study, we found that TUFM protein level was decreased in the hippocampus and cortex especially in the aged APP/PS1 mice, an animal model of AD. In HEK cells that stably express full-length human amyloid-ß precursor protein (HEK-APP), TUFM knockdown or overexpression increased or reduced the protein levels of ß-amyloid protein (Aß) and ß-amyloid converting enzyme 1 (BACE1), respectively. TUFM-mediated reduction of BACE1 was attenuated by translation inhibitor cycloheximide (CHX) or α-[2-[4-(3,4-Dichlorophenyl)-2-thiazolyl]hydrazinylidene]-2-nitro-benzenepropanoic acid (4EGI1), and in cells overexpressing BACE1 constructs deleting the 5' untranslated region (5'UTR). TUFM silencing increased the half-life of BACE1 mRNA, suggesting that RNA stability was affected by TUFM. In support, transcription inhibitor Actinomycin D (ActD) and silencing of nuclear factor κB (NFκB) failed to abolish TUFM-mediated regulation of BACE1 protein and mRNA. We further found that the mitochondria-targeted antioxidant TEMPO diminished the effects of TUFM on BACE1, suggesting that reactive oxygen species (ROS) played an important role. Indeed, cellular ROS levels were affected by TUFM knockdown or overexpression, and TUFM-mediated regulation of apoptosis and Tau phosphorylation at selective sites was attenuated by TEMPO. Collectively, TUFM protein levels were decreased in APP/PS1 mice. TUFM is involved in AD pathology by regulating BACE1 translation, apoptosis, and Tau phosphorylation, in which ROS plays an important role.


Subject(s)
Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/metabolism , Disease Models, Animal , Mitochondria/pathology , Peptide Elongation Factor Tu/metabolism , Reactive Oxygen Species/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Protein Precursor/physiology , Animals , Humans , Mice , Mice, Transgenic , Mitochondria/metabolism , Peptide Elongation Factor Tu/genetics , Phosphorylation , Presenilin-1/physiology
19.
J Nanobiotechnology ; 20(1): 354, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35918694

ABSTRACT

The CRISPR-Cas9 technology has changed the landscape of genome editing and has demonstrated extraordinary potential for treating otherwise incurable diseases. Engineering strategies to enable efficient intracellular delivery of CRISPR-Cas9 components has been a central theme for broadening the impact of the CRISPR-Cas9 technology. Various non-viral delivery systems for CRISPR-Cas9 have been investigated given their favorable safety profiles over viral systems. Many recent efforts have been focused on the development of stimuli-responsive non-viral CRISPR-Cas9 delivery systems, with the goal of achieving efficient and precise genome editing. Stimuli-responsive nanoplatforms are capable of sensing and responding to particular triggers, such as innate biological cues and external stimuli, for controlled CRISPR-Cas9 genome editing. In this Review, we overview the recent advances in stimuli-responsive nanoformulations for CRISPR-Cas9 delivery, highlight the rationale of stimuli and formulation designs, and summarize their biomedical applications.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Transfer Techniques
20.
Int J Mol Sci ; 23(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36499483

ABSTRACT

Lactic acid bacteria were reported as a promising alternative to antibiotics against pathogens. Among them, Lactobacillus rhamnosus could be used as probiotics and inhibit several pathogens, but its antibacterial mechanisms are still less known. Here, L. rhamnosus SCB0119 isolated from fermented pickles could inhibit bacterial growth or even cause cell death in Escherichia coli ATCC25922 and Staphylococcus aureus ATCC6538, which was mainly attributed to the cell-free culture supernatant (CFS). Moreover, CFS induced the accumulation of reactive oxygen species and destroyed the structure of the cell wall and membrane, including the deformation in cell shape and cell wall, the impairment of the integrity of the cell wall and inner membrane, and the increases in outer membrane permeability, the membrane potential, and pH gradient in E. coli and S. aureus. Furthermore, the transcriptomic analysis demonstrated that CFS altered the transcripts of several genes involved in fatty acid degradation, ion transport, and the biosynthesis of amino acids in E. coli, and fatty acid degradation, protein synthesis, DNA replication, and ATP hydrolysis in S. aureus, which are important for bacterial survival and growth. In conclusion, L. rhamnosus SCB0119 and its CFS could be used as a biocontrol agent against E. coli and S. aureus.


Subject(s)
Lacticaseibacillus rhamnosus , Probiotics , Staphylococcal Infections , Humans , Staphylococcus aureus , Escherichia coli , Probiotics/pharmacology , Anti-Bacterial Agents/pharmacology , Fatty Acids
SELECTION OF CITATIONS
SEARCH DETAIL