Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Toxicol Appl Pharmacol ; 486: 116942, 2024 May.
Article in English | MEDLINE | ID: mdl-38692360

ABSTRACT

Organotins have been widely used in various industrial applications. This study investigated the structure-activity relationship as inhibitors of human, pig, and rat gonadal 3ß-hydroxysteroid dehydrogenases (3ß-HSD). Human KGN cell, pig, and rat testis microsomes were utilized to assess the inhibitory effects of 18 organotins on the conversion of pregnenolone to progesterone. Among them, diphenyltin, triethyltin, and triphenyltin exhibited significant inhibitory activity against human 3ß-HSD2 with IC50 values of 114.79, 106.98, and 5.40 µM, respectively. For pig 3ß-HSD, dipropyltin, diphenyltin, triethyltin, tributyltin, and triphenyltin demonstrated inhibitory effects with IC50 values of 172.00, 100.19, 87.00, 5.75, and 1.65 µM, respectively. Similarly, for rat 3ß-HSD1, dipropyltin, diphenyltin, triethyltin, tributyltin, and triphenyltin displayed inhibitory activity with IC50 values of 81.35, 43.56, 55.55, 4.09, and 0.035 µM, respectively. They were mixed inhibitors of pig and rat 3ß-HSD, while triphenyltin was identified as a competitive inhibitor of human 3ß-HSD2. The mechanism underlying the inhibition of organotins on 3ß-HSD was explored, revealing that they may disrupt the enzyme activity by binding to cysteine residues in the catalytic sites. This proposition was supported by the observation that the addition of dithiothreitol reversed the inhibition caused by all organotins except for triethyltin, which was partially reversed. In conclusion, this study provides valuable insights into the structure-activity relationship of organotins as inhibitors of human, pig, and rat gonadal 3ß-HSD. The mechanistic investigation suggests that these compounds likely exert their inhibitory effects through binding to cysteine residues in the catalytic sites.


Subject(s)
Enzyme Inhibitors , Organotin Compounds , Testis , Animals , Humans , Structure-Activity Relationship , Organotin Compounds/pharmacology , Organotin Compounds/chemistry , Rats , Male , Testis/enzymology , Testis/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Swine , 3-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 3-Hydroxysteroid Dehydrogenases/metabolism , Molecular Docking Simulation , Progesterone/pharmacology , Progesterone/metabolism , Microsomes/enzymology , Microsomes/drug effects , Rats, Sprague-Dawley
2.
BMC Med Imaging ; 21(1): 39, 2021 02 27.
Article in English | MEDLINE | ID: mdl-33639883

ABSTRACT

BACKGROUND: Quantitative bone SPECT/CT is useful for disease follow up and inter-patient comparison. For bone metastatic malignant lesions, spine is the most commonly invaded site. However, Quantitative studies with large sample size investigating all the segments of normal cervical, thoracic and lumbar vertebrae are seldom reported. This study was to evaluate the quantitative tomography of normal vertebrae using 99mTc-MDP with SPECT/CT to investigate the feasibility of standardized uptake value (SUV) for differential diagnosis of benign and malignant bone lesions. METHODS: A retrospective study was carried out involving 221 patients (116 males and 105 females) who underwent SPECT/CT scan using 99mTc-MDP. The maximum SUV (SUVmax), mean SUV (SUVmean) and CT values (Hounsfield Unit, HU) of 2416 normal vertebrae bodies, 157 benign bone lesions and 118 malignant bone metastasis foci were obtained. The correlations between SUVmax of normal vertebrae and CT values of normal vertebrae, age, height, weight, BMI of patients were analyzed. Statistical analysis was performed with data of normal, benign and malignant groups corresponding to same sites and gender. RESULTS: The SUVmax and SUVmean of normal vertebrae in males were markedly higher than those in females (P < 0.0009). The SUVmax of each normal vertebral segment showed a strong negative correlation with CT values in both males and females (r = - 0.89 and - 0.92, respectively; P < 0.0009). The SUVmax of normal vertebrae also showed significant correlation with weight, height, and BMI in males (r = 0.4, P < 0.0009; r = 0.28, P = 0.005; r = 0.22, P = 0.026), and significant correlation with weight and BMI in females (r = 0.32, P = 0.009; r = 0.23, P = 0.031). The SUVmax of normal group, benign bone lesion group and malignant bone metastasis foci group showed statistical differences in both males and females. CONCLUSION: Our study evaluated SUVmax and SUVmean of normal vertebrae, benign bone lesion and malignant bone metastasis foci with a large sample population. Preliminary results proved the potential value of SUVmax in differentiation benign and malignant bone lesions. The results may provide a quantitative reference for clinical diagnosis and the evaluation of therapeutic response in vertebral lesions.


Subject(s)
Diphosphonates/pharmacokinetics , Organotechnetium Compounds/pharmacokinetics , Single Photon Emission Computed Tomography Computed Tomography , Spinal Diseases/diagnostic imaging , Spinal Neoplasms/diagnostic imaging , Spine/diagnostic imaging , Adult , Aged , Aged, 80 and over , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Reference Values , Retrospective Studies , Spinal Diseases/metabolism , Spinal Diseases/pathology , Spinal Neoplasms/metabolism , Spinal Neoplasms/pathology , Spine/metabolism , Spine/pathology
3.
Nucleic Acids Res ; 46(D1): D64-D70, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29059379

ABSTRACT

Circadian rhythms govern various kinds of physiological and behavioral functions of the living organisms, and disruptions of the rhythms are highly detrimental to health. Although several databases have been built for circadian genes, a resource for comprehensive post-transcriptional regulatory information of circadian RNAs and expression patterns of disease-related circadian RNAs is still lacking. Here, we developed CirGRDB (http://cirgrdb.biols.ac.cn) by integrating more than 4936 genome-wide assays, with the aim of fulfilling the growing need to understand the rhythms of life. CirGRDB presents a friendly web interface that allows users to search and browse temporal expression patterns of interested genes in 37 human/mouse tissues or cell lines, and three clinical disorders including sleep disorder, aging and tumor. More importantly, eight kinds of potential transcriptional and post-transcriptional regulators involved in the rhythmic expression of the specific genes, including transcription factors, histone modifications, chromatin accessibility, enhancer RNAs, miRNAs, RNA-binding proteins, RNA editing and RNA methylation, can also be retrieved. Furthermore, a regulatory network could be generated based on the regulatory information. In summary, CirGRDB offers a useful repository for exploring disease-related circadian RNAs, and deciphering the transcriptional and post-transcriptional regulation of circadian rhythms.


Subject(s)
Circadian Rhythm/genetics , Databases, Genetic , Animals , CLOCK Proteins/genetics , Circadian Clocks/genetics , Gene Expression Regulation , Gene Regulatory Networks , Genome , Genome-Wide Association Study , Histone Code , Humans , Internet , Mice , RNA/genetics , RNA/metabolism , RNA Editing , RNA Processing, Post-Transcriptional , User-Computer Interface
4.
Mol Psychiatry ; 21(2): 290-7, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25849321

ABSTRACT

Currently, many studies on neuropsychiatric disorders have utilized massive trio-based whole-exome sequencing (WES) and whole-genome sequencing (WGS) to identify numerous de novo mutations (DNMs). Here, we retrieved 17,104 DNMs from 3555 trios across four neuropsychiatric disorders: autism spectrum disorder, epileptic encephalopathy, intellectual disability and schizophrenia, in addition to unaffected siblings (control), from 36 studies by WES/WGS. After eliminating non-exonic variants, we focused on 3334 exonic DNMs for evaluation of their association with these diseases. Our results revealed a higher prevalence of DNMs in the probands of all four disorders compared with the one in the controls (P<1.3 × 10(-7)). The elevated DNM frequency is dominated by loss-of-function/deleterious single-nucleotide variants and frameshift indels (that is, extreme mutations, P<4.5 × 10(-5)). With extensive annotation of these 'extreme' mutations, we prioritized 764 candidate genes in these four disorders. A combined analysis of Gene Ontology, microRNA targets and transcription factor targets revealed shared biological process and non-coding regulatory elements of candidate genes in the pathology of neuropsychiatric disorders. In addition, weighted gene co-expression network analysis of human laminar-specific neocortical expression data showed that candidate genes are convergent on eight shared modules with specific layer enrichment and biological process features. Furthermore, we identified that 53 candidate genes are associated with more than one disorder (P<0.000001), suggesting a possibly shared genetic etiology underlying these disorders. Particularly, DNMs of the SCN2A gene are frequently occurred across all four disorders. Finally, we constructed a freely available NPdenovo database, which provides a comprehensive catalog of the DNMs identified in neuropsychiatric disorders.


Subject(s)
Autism Spectrum Disorder/genetics , Intellectual Disability/genetics , Schizophrenia/genetics , Computational Biology/methods , Databases, Genetic , Exome/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Mutation/genetics , Neuropsychiatry , Odds Ratio , Sequence Analysis, DNA
5.
Nucleic Acids Res ; 43(Database issue): D893-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25324312

ABSTRACT

Epilepsy is one of the most prevalent chronic neurological disorders, afflicting about 3.5-6.5 per 1000 children and 10.8 per 1000 elderly people. With intensive effort made during the last two decades, numerous genes and mutations have been published to be associated with the disease. An organized resource integrating and annotating the ever-increasing genetic data will be imperative to acquire a global view of the cutting-edge in epilepsy research. Herein, we developed EpilepsyGene (http://61.152.91.49/EpilepsyGene). It contains cumulative to date 499 genes and 3931 variants associated with 331 clinical phenotypes collected from 818 publications. Furthermore, in-depth data mining was performed to gain insights into the understanding of the data, including functional annotation, gene prioritization, functional analysis of prioritized genes and overlap analysis focusing on the comorbidity. An intuitive web interface to search and browse the diversified genetic data was also developed to facilitate access to the data of interest. In general, EpilepsyGene is designed to be a central genetic database to provide the research community substantial convenience to uncover the genetic basis of epilepsy.


Subject(s)
Databases, Nucleic Acid , Epilepsy/genetics , Mutation , Comorbidity , Epilepsy/epidemiology , Gene Regulatory Networks , Genes , Humans , Internet , Molecular Sequence Annotation
6.
J Med Genet ; 52(4): 275-81, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25596308

ABSTRACT

OBJECTIVES: Recently, several studies documented that de novo mutations (DNMs) play important roles in the aetiology of sporadic diseases. Next-generation sequencing (NGS) enables variant calling at single-base resolution on a genome-wide scale. However, accurate identification of DNMs from NGS data still remains a major challenge. We developed mirTrios, a web server, to accurately detect DNMs and rare inherited mutations from NGS data in sporadic diseases. METHODS: The expectation-maximisation (EM) model was adopted to accurately identify DNMs from variant call files of a trio generated by GATK (Genome Analysis Toolkit). The GATK results, which contain certain basic properties (such as PL, PRT and PART), are iteratively integrated into the EM model to strike a threshold for DNMs detection. Training sets of true and false positive DNMs in the EM model were built from whole genome sequencing data of 64 trios. RESULTS: With our in-house whole exome sequencing datasets from 20 trios, mirTrios totally identified 27 DNMs in the coding region, 25 of which (92.6%) are validated as true positives. In addition, to facilitate the interpretation of diverse mutations, mirTrios can also be employed in the identification of rare inherited mutations. Embedded with abundant annotation of DNMs and rare inherited mutations, mirTrios also supports known diagnostic variants and causative gene identification, as well as the prioritisation of novel and promising candidate genes. CONCLUSIONS: mirTrios provides an intuitive interface for the general geneticist and clinician, and can be widely used for detection of DNMs and rare inherited mutations, and annotation in sporadic diseases. mirTrios is freely available at http://centre.bioinformatics.zj.cn/mirTrios/.


Subject(s)
Computational Biology/methods , DNA Mutational Analysis/methods , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , Models, Genetic , Sequence Analysis, DNA/methods , Humans , Mutation
7.
J Steroid Biochem Mol Biol ; 240: 106510, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508472

ABSTRACT

The objective of this study was to examine the effect of 11 organochlorine pesticides on human and rat 17ß-Hydroxysteroid dehydrogenase 1 (17ß-HSD1) in human placental and rat ovarian microsome and on estradiol production in BeWo cells. The results showed that the IC50 values for endosulfan, fenhexamid, chlordecone, and rhothane on human 17ß-HSD1 were 21.37, 73.25, 92.80, and 117.69 µM. Kinetic analysis revealed that endosulfan acts as a competitive inhibitor, fenhexamid as a mixed/competitive inhibitor, chlordecone and rhothane as a mixed/uncompetitive inhibitor. In BeWo cells, all insecticides except endosulfan significantly decreased estradiol production at 100 µM. For rats, the IC50 values for dimethomorph, fenhexamid, and chlordecone were 11.98, 36.92, and 109.14 µM. Dimethomorph acts as a mixed inhibitor, while fenhexamid acts as a mixed/competitive inhibitor. Docking analysis revealed that endosulfan and fenhexamid bind to the steroid-binding site of human 17ß-HSD1. On the other hand, chlordecone and rhothane binds to a different site other than the steroid and NADPH-binding site. Dimethomorph binds to the steroid/NADPH binding site, and fenhexamid binds to the steroid binding site of rat 17ß-HSD1. Bivariate correlation analysis showed a positive correlation between IC50 values and LogP for human 17ß-HSD1, while a slight negative correlation was observed between IC50 values and the number of HBA. ADMET analysis provided insights into the toxicokinetics and toxicity of organochlorine pesticides. In conclusion, this study identified the inhibitory effects of 3-4 organochlorine pesticides and binding mechanisms on human and rat 17ß-HSD1, as well as their impact on hormone production.


Subject(s)
Hydrocarbons, Chlorinated , Molecular Docking Simulation , Pesticides , Animals , Humans , Rats , Hydrocarbons, Chlorinated/chemistry , Hydrocarbons, Chlorinated/pharmacology , Structure-Activity Relationship , Female , Pesticides/chemistry , Pesticides/metabolism , 17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 17-Hydroxysteroid Dehydrogenases/metabolism , 17-Hydroxysteroid Dehydrogenases/chemistry , Pregnancy , Placenta/metabolism , Estradiol/metabolism , Estradiol/chemistry , Insecticides/chemistry , Insecticides/pharmacology
8.
Food Chem Toxicol ; 181: 114052, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37758047

ABSTRACT

Bisphenols, estrogenic endocrine-disrupting chemicals, disrupt at least one of three endocrine pathways (estrogen, androgen, and thyroid). 17ß-Hydroxysteroid dehydrogenase 1 (17ß-HSD1) is a steroidogenic enzyme that catalyzes the activation of estradiol from estrone in human placenta and rat ovary. However, whether bisphenols inhibit 17ß-HSD1 and the mode of action remains unclear. This study we screened 17 bisphenols for inhibiting human 17ß-HSD1 in placental microsomes and rat 17ß-HSD1 in ovarian microsomes and determined 3D-quantitative structure-activity relationship (3D-QSAR) and mode of action. We observed some bisphenols with substituents were found to significantly inhibit both human and rat 17ß-HSD1 with the most potent inhibition on human enzyme by bisphenol H (IC50 = 0.90 µM) when compared to bisphenol A (IC50 = 113.38 µM). Rat enzyme was less sensitive to the inhibition of bisphenols than human enzyme with bisphenol H (IC50 = 32.94 µM) for rat enzyme. We observed an inverse correlation between IC50 and hydrophobicity (expressed as Log P). Docking analysis showed that they bound steroid-binding site of 17ß-HSD1. The 3D-QSAR models demonstrated that hydrophobic region, hydrophobic aromatic, ring aromatic, and hydrogen bond acceptor are key factors for the inhibition of steroid synthesis activity of 17ß-HSD1.


Subject(s)
Enzyme Inhibitors , Quantitative Structure-Activity Relationship , Humans , Female , Pregnancy , Animals , Rats , Models, Molecular , Enzyme Inhibitors/pharmacology , Placenta , Estrone/chemistry , Estrone/pharmacology , Structure-Activity Relationship
10.
Int J Nanomedicine ; 17: 5899-5913, 2022.
Article in English | MEDLINE | ID: mdl-36474528

ABSTRACT

Purpose: Poly(lactic-co-glycolic) acid (PLGA) nanoparticles coated with the membrane of red blood cells (RBC-NP) have been applied in various biomedical fields. Despite the well-documented great biocompatibility, the potential toxicity of RBC-NP on maternal mice or their developing fetuses during pregnancy, or juvenile mice post-birth, remains unclear, which warrants a systematic evaluation. Methods: We fabricate an RBC-NP with approximately 50 nm in diameter (RBC-NP-50). Upon RBC-NP-50, pregnant mice are intravenously injected with this nanoparticle either at a single high dose of 400 mg/kg (1HD) or a low dose of 200 mg/kg for 3 times (3LD). Afterwards, the biocompatible assessments are performed at 48 h after the final injection or 21 d post-birth/partum both on maternal and fetal/juvenile mice. Results: RBC-NP-50 is capable of accumulating in the placenta and then passing through the blood-fetal barrier (BFB) into the fetus. On 48 h after RBC-NP-50 exposure, no significant dose-dependent toxicity is observed in maternal mice including blood biochemistry, inflammatory factors, progesterone level, histological analysis, etc, whereas fetal brains reveal remarkable differentially expressed genes analyzed by transcriptome sequencing. On 21 d post-birth, those genes' expression in juvenile mice is alleviated, along with negligible differences in behavioral evaluations including surface righting test, negative geotaxis test, cliff avoidance test, and olfactory orientation test. Conclusion: These results indicate that RBC-NP is considered to be generally safe and biocompatible both for maternal mice and fetus during pregnancy, and for the subsequent juvenile mice post-birth, although future studies will need to examine higher dosage or longer-term measurements.


Subject(s)
Erythrocyte Membrane , Mice , Animals
11.
J Genet Genomics ; 48(4): 312-323, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33994118

ABSTRACT

Neurodevelopmental disorders (NDDs) are a set of complex disorders characterized by diverse and co-occurring clinical symptoms. The genetic contribution in patients with NDDs remains largely unknown. Here, we sequence 519 NDD-related genes in 3,195 Chinese probands with neurodevelopmental phenotypes and identify 2,522 putative functional mutations consisting of 137 de novo mutations (DNMs) in 86 genes and 2,385 rare inherited mutations (RIMs) with 22 X-linked hemizygotes in 13 genes, 2 homozygous mutations in 2 genes and 23 compound heterozygous mutations in 10 genes. Furthermore, the DNMs of 16,807 probands with NDDs are retrieved from public datasets and combine in an integrated analysis with the mutation data of our Chinese NDD probands by taking 3,582 in-house controls of Chinese origin as background. We prioritize 26 novel candidate genes. Notably, six of these genes - ITSN1, UBR3, CADM1, RYR3, FLNA, and PLXNA3 - preferably contribute to autism spectrum disorders (ASDs), as demonstrated by high co-expression and/or interaction with ASD genes confirmed via rescue experiments in a mouse model. Importantly, these genes are differentially expressed in the ASD cortex in a significant manner and involved in ASD-associated networks. Together, our study expands the genetic spectrum of Chinese NDDs, further facilitating both basic and translational research.


Subject(s)
Autism Spectrum Disorder/genetics , Genes, X-Linked/genetics , Genetic Predisposition to Disease , Neurodevelopmental Disorders/genetics , Adaptor Proteins, Vesicular Transport/genetics , Animals , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , Cell Adhesion Molecule-1/genetics , Child , China/epidemiology , Disease Models, Animal , Female , Filamins/genetics , Gene Expression Regulation/genetics , Hemizygote , Humans , Male , Mice , Mutation/genetics , Neurodevelopmental Disorders/epidemiology , Neurodevelopmental Disorders/pathology , Phenotype , Receptors, Cell Surface/genetics , Ryanodine Receptor Calcium Release Channel/genetics
12.
Ther Adv Med Oncol ; 12: 1758835920977117, 2020.
Article in English | MEDLINE | ID: mdl-33425025

ABSTRACT

BACKGROUND: Intratumor heterogeneity (ITH) has been shown to be inversely associated with immune infiltration in several cancers including clear cell renal cell carcinoma (ccRCC), but it remains unclear whether ITH is associated with response to immunotherapy (e.g. PD-1 blockade) in ccRCC. METHODS: We quantified ITH using mutant-allele tumor heterogeneity, investigated the association of ITH with immune parameters in patients with ccRCC (n = 336) as well as those with papillary RCC (pRCC, n = 280) from The Cancer Genome Atlas, and validations were conducted in patients with ccRCC from an independent cohort (n = 152). The relationship between ITH and response to anti-PD-1 immunotherapy was explored in patients with metastatic ccRCC from a clinical trial of anti-PD-1 therapy (n = 35), and validated in three equal-size simulated data sets (n = 60) generated by random sampling with replacement based on this clinical trial cohort. RESULTS: In ccRCC, low ITH was associated with better survival, more reductions in tumor burden, and clinical benefit of anti-PD-1 immunotherapy through modulating immune activity involving more neoantigens, elevated expression of HLA class I genes, and higher abundance of dendritic cells. Furthermore, we found that the association between the level of ITH and response to PD-1 blockade was independent of the mutation status of PBRM1 and that integrating both factors performed better than the individual predictors in predicting the benefit of anti-PD-1 immunotherapy in ccRCC patients. In pRCC, increased immune activity was also observed in low- versus high-ITH tumors, including higher neoantigen counts, increased abundance of monocytes, and decreased expression of PD-L1 and PD-L2. CONCLUSIONS: ITH may be helpful in the identification of patients who could benefit from PD-1 blockade in ccRCC, and even in pRCC where no genomic metrics has been found to correlate with response to immune checkpoint inhibitors.

13.
Int J Biol Sci ; 13(7): 923-934, 2017.
Article in English | MEDLINE | ID: mdl-28808424

ABSTRACT

Oxidative stress is considered to be a key risk state for a variety of human diseases. In response to oxidative stress, the regulation of transcriptional expression of DNA repair genes would be important to DNA repair and genomic stability. However, the overall pattern of transcriptional expression of DNA repair genes and the underlying molecular response mechanism to oxidative stress remain unclear. Here, by employing colorectal cancer cell lines following exposure to hydrogen peroxide, we generated expression profiles of DNA repair genes via RNA-seq and identified gene subsets that are induced or repressed following oxidative stress exposure. RRBS-seq analyses further indicated that transcriptional regulation of most of the DNA repair genes that were induced or repressed is independent of their DNA methylation status. Our analyses also indicate that hydrogen peroxide induces deacetylase SIRT1 which decreases chromatin affinity and the activity of histone acetyltransferase hMOF toward H4K16ac and results in decreased transcriptional expression of DNA repair genes. Taken together, our findings provide a potential mechanism by which oxidative stress suppresses DNA repair genes which is independent of the DNA methylation status of their promoters.


Subject(s)
DNA Repair , Histone Acetyltransferases/metabolism , Histones/metabolism , Oxidative Stress/physiology , RNA/chemistry , Colorectal Neoplasms , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , HCT116 Cells , Histone Acetyltransferases/genetics , Histones/genetics , Humans , Hydrogen Peroxide/toxicity , Nucleic Acid Amplification Techniques , Promoter Regions, Genetic , RNA/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism
14.
J Genet Genomics ; 43(2): 63-75, 2016 Feb 20.
Article in English | MEDLINE | ID: mdl-26924689

ABSTRACT

The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, a simple and efficient tool for genome editing, has experienced rapid progress in its technology and applicability in the past two years. Here, we review the recent advances in CRISPR/Cas9 technology and the ways that have been adopted to expand our capacity for precise genome manipulation. First, we introduce the mechanism of CRISPR/Cas9, including its biochemical and structural implications. Second, we highlight the latest improvements in the CRISPR/Cas9 system, especially Cas9 protein modifications for customization. Third, we review its current applications, in which the versatile CRISPR/Cas9 system was employed to edit the genome, epigenome, or RNA of various organisms. Although CRISPR/Cas9 allows convenient genome editing accompanied by many benefits, we should not ignore the significant ethical and biosafety concerns that it raises. Finally, we discuss the prospective applications and challenges of several promising techniques adapted from CRISPR/Cas9.


Subject(s)
CRISPR-Associated Proteins/chemistry , CRISPR-Cas Systems , Endodeoxyribonucleases/chemistry , Gene Editing , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Mutation , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL