Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Molecules ; 27(5)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35268565

ABSTRACT

Polygonatum kingianum Collett & Hemsl is one of the famous traditional Chinese herbs with satisfactory therapeutic effects on invigorating Qi, nourishing Yin and moistening lungs, in which steroidal saponins are one class of important active substances. The main purpose is to determine the optimal extraction technology of steroidal saponins and evaluate the quality of P. kingianum planted in five different areas. The optimal ultrasonic-assisted extraction (UAE) technology was established by using single-factor experiments and the response surface methodology (RSM), and the determination method of high-performance liquid chromatography (HPLC) for dioscin and diosgenin, two primary types of acid-hydrolyzed steroidal saponins, was constructed with good linear range and precision. The results showed that UAE was an efficient extraction method for steroidal saponins, and the extraction yield was significantly affected by the liquid-solid ratio. The optimal extraction technology was generated following a liquid-solid ratio of 10:1 (mL/g), an ethanol concentration of 85% (v/v), an extraction time of 75 min, an extraction temperature of 50 °C and three extractions, of which these parameters were in line with the predicted values calculated by RSM. Considering only dioscin and diosgenin, the quality of P. kingianum planted at five sample plots presented non-significant difference. However, the content of diosgenin in Pingbian Prefecture (PB) was higher than that of the other four areas with a value of 0.46 mg/g. Taken together, the optimal UAE technology for P. kingianum steroidal saponins was determined via RSM. The quality evaluation revealed that there was a non-significant difference among P. kingianum planted in different areas based on the contents of the sum of dioscin and diosgenin. This work has important reference value for the exploitation and utilization of P. kingianum.


Subject(s)
Polygonatum
2.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(9): 1040-1046, 2024 Sep 15.
Article in Zh | MEDLINE | ID: mdl-39300876

ABSTRACT

Objective: To investigate the application experiences and effectiveness of the infra-acetabular screw (IAS) placement technique in acetabular fracture surgery. Methods: A clinical data of 34 patients with complex acetabular fractures with anterior and posterior columns separation, who were admitted between January 2019 and October 2023 and treated with IAS fixation, was retrospectively analyzed. There were 23 males and 11 females with an average age of 55.3 years (range, 18-78 years). The acetabular fractures caused by traffic accident in 20 cases, falling from height in 12 cases, crushing injury in 1 case, and bruising with a heavy object in 1 case. According to the Letournel-Judet classification, there were 7 cases of anterior column fracture, 8 cases of anterior wall/column plus posterior hemi-transverse fracture, 2 cases of T-shaped fracture, and 17 cases of both-column fracture. The time from injury to surgery was 4-21 days (mean, 8.6 days). The time of IAS placement and the intraoperative blood loss were recorded. After surgery, the X-ray film and CT scan were re-examined, and the modified Matta score was used to assess the quality of fracture reduction. The trajectory of IAS in the channel was analyzed based on CT scan, and the screw length was measured. During follow-up, the fracture healing was observed and the hip function was assessed according to the modified Merle d'Aubigné-Postel scoring system at last follow-up. Results: The IAS was successfully implanted in all 34 patients. The length of IAS ranged from 70 to 100 mm (mean, 86.2 mm). The time of IAS placement ranged from 10 to 40 minutes (mean, 20.7 minutes). The intraoperative blood loss ranged from 520 to 820 mL (mean, 716.8 mL). All patients were followed up 8-62 months (mean, 21.8 months). After surgery, 4 patients developed lateral femoral cutaneous nerve injury, 2 developed popliteal vein thrombosis of the lower extremity, 3 developed incision infection, and no surgical complication such as arteriovenous injury or obturator nerve palsy occurred. At last follow-up, the hip function was rated as excellent in 14 cases, good in 13 cases, fair in 4 cases, and poor in 3 cases according to the Merle d'Aubigné-Postel scoring system, with an excellent and good rate of 79.41%. Imaging re-examined showed that the quality of fracture reduction was rated as excellent in 9 cases, good in 19 cases, and poor in 6 cases according to the modified Matta score, with an excellent and good rate of 82.35%; and 25 (73.53%) IAS trajectories were located in the channel. All fractures obtained bony union, and the healing time was 12-24 weeks (mean, 18 weeks). During follow-up, there was no loosening or fracture of the plate and screws. Conclusion: IAS placement technique can effectively strengthen internal fixation and prevent fracture re-displacement, making it a useful adjunct for treating complex acetabular fractures with anterior and posterior columns separation.


Subject(s)
Acetabulum , Bone Screws , Fracture Fixation, Internal , Fractures, Bone , Humans , Male , Female , Middle Aged , Adult , Fracture Fixation, Internal/methods , Fracture Fixation, Internal/instrumentation , Acetabulum/injuries , Acetabulum/surgery , Fractures, Bone/surgery , Aged , Young Adult , Adolescent , Treatment Outcome , Retrospective Studies
3.
J Hazard Mater ; 460: 132401, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37639786

ABSTRACT

The peracetic acid (PAA)-activation process has attracted much attention in wastewater treatment. However, the low electron efficiency at the interface between heterogeneous catalysts and PAA has affected its practical application. For this study, we developed a carbon nitride hollow-nanotube catalysts with dispersed Cu(I) sites (Cu(I)-TCN) for the photocatalytic activation of PAA for antibiotics degradation. The obtained Cu(I)-TCN catalyst demonstrated an enhanced capacity for visible light harvesting along with increased charge transfer rates. Specifically, the developed Cu(I)-TCN/visible light/PAA system was able to completely remove antibiotics within 20 min, with a kinetic constant that was 25 times higher than a Cu(I)-TCN/visible light system, and 83 times higher than Cu(I)-TCN/PAA systems. Scavenging experiment and electron paramagnetic resonance (EPR) indicated that singlet oxygen was dominant reactive specie for sulfisoxazole (SIZ) removal. Besides, electrochemical tests and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy verified that the electron transfer efficiency of PAA activation was promoted due to the formation of inner-sphere interactions between PAA and Cu(I)-TCN, resulting in the quick removal of antibiotics. Further, after exposure to visible light, the Cu(I)-TCN excited photogenerated electrons which supplemented the electrons consumed in the reaction and drove the valence cycle of Cu ions. Overall, this research offered novel insights into the non-radical pathway for heterogeneous visible light-driven advanced oxidation processes and their potential for practical wastewater remediation.


Subject(s)
Anti-Bacterial Agents , Nanotubes, Carbon , Peracetic Acid , Catalytic Domain
4.
ACS Omega ; 7(25): 21492-21504, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35785319

ABSTRACT

In this work, the isomer mixture of 4,4'-diphenylmethane diisocyanate (MDI) and 2,4'-MDI was separated and purified by dynamic falling film melt crystallization, and 99.3% purity and 50.8% yield of 4,4'-MDI could be obtained under optimized conditions. The separation mechanism was simulated by density functional theory (DFT) and molecular dynamics (MD) simulation. Results showed that compared with 2,4'-MDI, 4,4'-MDI molecules could form a more stable and symmetrical crystal structure due to their stronger charge density symmetry and electrostatic potential energy. Furthermore, the separation phenomenon and the formation of the crystal structure were observed according to the radial distribution function (RDF) and orientation correlation function obtained from MD simulation. Finally, the attachment energy (AE) model was used to observe and compare different crystal surfaces; it was proposed that the aggregation of 4,4'-MDI was attributed to the polar attraction between isocyanate groups according to the results of the orientation correlation function. It was also observed that compared with 2,4'-MDI, 4,4'-MDI molecules on the (110) crystal surface were easier to form crystal structures.

5.
RSC Adv ; 10(28): 16515-16525, 2020 Apr 23.
Article in English | MEDLINE | ID: mdl-35498848

ABSTRACT

A series of Ru/g-C3N4 materials with highly dispersed Ru were firstly prepared by an ultrasonic impregnation method using carbon nitride as a support. The catalysts were characterized by various techniques including BET and elemental analysis, ICP-AES, XPS, XRD, CO2-TPD and TEM. The results demonstrated that Ru/g-C3N4 materials with a mesoporous structure and highly dispersed Ru were successfully prepared. The chemo-selective hydrogenation of p-phenylenediamine (PPDA) to 1,4-cyclohexanediamine (CHDA) over Ru/g-C3N4 as a model reaction was investigated in detail. PPDA conversion of 100% with a CHDA selectivity of more than 86% could be achieved under mild conditions. It can be inferred that the carbon nitride support possessed abundant basic sites and the Ru/g-C3N4-T catalysts provided suitable basicity for the aromatic ring hydrogenation. Compared to the N-free Ru/C catalyst, the involvement of nitrogen species in Ru/g-C3N4 remarkably improved the catalytic performance. In addition, the recyclability of the catalyst demonstrated that the aggregation of Ru nanoparticles was responsible for the decrease of the catalytic activity. Furthermore, this strategy also could be expanded to the selective hydrogenation of other aromatic diamines to alicyclic diamines.

6.
Environ Sci Pollut Res Int ; 25(5): 4761-4775, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29198026

ABSTRACT

A series of low-cost Cu-Mn-mixed oxides supported on biochar (CuMn/HBC) synthesized by an impregnation method were applied to study the simultaneous removal of formaldehyde (HCHO) and elemental mercury (Hg0) at 100-300° C from simulated flue gas. The metal loading value, Cu/Mn molar ratio, flue gas components, reaction mechanism, and interrelationship between HCHO removal and Hg0 removal were also investigated. Results suggested that 12%CuMn/HBC showed the highest removal efficiency of HCHO and Hg0 at 175° C corresponding to 89%and 83%, respectively. The addition of NO and SO2 exhibited inhibitive influence on HCHO removal. For the removal of Hg0, NO showed slightly positive influence and SO2 had an inhibitive effect. Meanwhile, O2 had positive impact on the removal of HCHO and Hg0. The samples were characterized by SEM, XRD, BET, XPS, ICP-AES, FTIR, and H2-TPR. The sample characterization illustrated that CuMn/HBC possessed the high pore volume and specific surface area. The chemisorbed oxygen (Oß) and the lattice oxygen (Oα) which took part in the removal reaction largely existed in CuMn/HBC. What is more, MnO2 and CuO (or Cu2O) were highly dispersed on the CuMn/HBC surface. The strong synergistic effect between Cu-Mn mixed oxides was critical to the removal reaction of HCHO and Hg0 via the redox equilibrium of Mn4+ + Cu+ ↔ Mn3+ + Cu2+.


Subject(s)
Air Pollutants/analysis , Charcoal/chemistry , Copper/chemistry , Formaldehyde/analysis , Manganese Compounds/chemistry , Mercury/analysis , Oxides/chemistry , Air Pollution/prevention & control , Catalysis , Hot Temperature , Models, Theoretical , Pinus/chemistry , Plant Components, Aerial/chemistry
7.
Comput Math Methods Med ; 2014: 914028, 2014.
Article in English | MEDLINE | ID: mdl-25254066

ABSTRACT

The adaptive distance preserving level set (ADPLS) method is fast and not dependent on the initial contour for the segmentation of images with intensity inhomogeneity, but it often leads to segmentation with compromised accuracy. And the local binary fitting model (LBF) method can achieve segmentation with higher accuracy but with low speed and sensitivity to initial contour placements. In this paper, a novel and adaptive fusing level set method has been presented to combine the desirable properties of these two methods, respectively. In the proposed method, the weights of the ADPLS and LBF are automatically adjusted according to the spatial information of the image. Experimental results show that the comprehensive performance indicators, such as accuracy, speed, and stability, can be significantly improved by using this improved method.


Subject(s)
Image Enhancement/methods , Pattern Recognition, Automated/methods , Algorithms , Brain/anatomy & histology , Computer Simulation , Electronic Data Processing , Humans , Models, Statistical , Normal Distribution , Reproducibility of Results , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL