Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
J Physiol ; 602(4): 737-757, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38345534

ABSTRACT

Paraoxonase 3 (PON3) is expressed in the aldosterone-sensitive distal nephron, where filtered Na+ is reabsorbed mainly via the epithelial Na+ channel (ENaC) and Na+ -coupled co-transporters. We previously showed that PON3 negatively regulates ENaC through a chaperone mechanism. The present study aimed to determine the physiological role of PON3 in renal Na+ and K+ homeostasis. Pon3 knockout (KO) mice had higher amiloride-induced natriuresis and lower plasma [K+ ] at baseline. Single channel recordings in split-open tubules showed that the number of active channels per patch was significantly higher in KO mice, resulting in a higher channel activity in the absence of PON3. Although whole kidney abundance of ENaC subunits was not altered in Pon3 KOs, ENaC gamma subunit was more apically distributed within the connecting tubules and cortical collecting ducts of Pon3 KO kidneys. Additionally, small interfering RNA-mediated knockdown of PON3 in cultured mouse cortical collecting duct cells led to an increased surface abundance of ENaC gamma subunit. As a result of lower plasma [K+ ], sodium chloride co-transporter phosphorylation was enhanced in the KO kidneys, a phenotype that was corrected by a high K+ diet. Finally, PON3 expression was upregulated in mouse kidneys under dietary K+ restriction, potentially providing a mechanism to dampen ENaC activity and associated K+ secretion. Taken together, our results show that PON3 has a role in renal Na+ and K+ homeostasis through regulating ENaC functional expression in the distal nephron. KEY POINTS: Paraoxonase 3 (PON3) is expressed in the distal nephron of mouse kidneys and functions as a molecular chaperone to reduce epithelial Na+ channel (ENaC) expression and activity in heterologous expression systems. We examined the physiological role of PON3 in renal Na+ and K+ handling using a Pon3 knockout (KO) mouse model. At baseline, Pon3 KO mice had lower blood [K+ ], more functional ENaC in connecting tubules/cortical collecting ducts, higher amiloride-induced natriuresis, and enhanced sodium chloride co-transporter (NCC) phosphorylation. Upon challenge with a high K+ diet, Pon3 KO mice had normalized blood [K+ ] and -NCC phosphorylation but lower circulating aldosterone levels compared to their littermate controls. Kidney PON3 abundance was altered in mice under dietary K+ loading or K+ restriction, providing a potential mechanism for regulating ENaC functional expression and renal Na+ and K+ homeostasis in the distal nephron.


Subject(s)
Amiloride , Symporters , Mice , Animals , Amiloride/pharmacology , Aryldialkylphosphatase/metabolism , Epithelial Sodium Channels/metabolism , Aldosterone/metabolism , Sodium Chloride/metabolism , Sodium/metabolism , Nephrons/metabolism
2.
J Biol Chem ; 299(3): 102914, 2023 03.
Article in English | MEDLINE | ID: mdl-36649907

ABSTRACT

Epithelial Na+ channels (ENaCs) and related channels have large extracellular domains where specific factors interact and induce conformational changes, leading to altered channel activity. However, extracellular structural transitions associated with changes in ENaC activity are not well defined. Using crosslinking and two-electrode voltage clamp in Xenopus oocytes, we identified several pairs of functional intersubunit contacts where mouse ENaC activity was modulated by inducing or breaking a disulfide bond between introduced Cys residues. Specifically, crosslinking E499C in the ß-subunit palm domain and N510C in the α-subunit palm domain activated ENaC, whereas crosslinking ßE499C with αQ441C in the α-subunit thumb domain inhibited ENaC. We determined that bridging ßE499C to αN510C or αQ441C altered the Na+ self-inhibition response via distinct mechanisms. Similar to bridging ßE499C and αQ441C, we found that crosslinking palm domain αE557C with thumb domain γQ398C strongly inhibited ENaC activity. In conclusion, we propose that certain residues at specific subunit interfaces form microswitches that convey a conformational wave during ENaC gating and its regulation.


Subject(s)
Epithelial Sodium Channels , Oocytes , Animals , Mice , Epithelial Sodium Channels/metabolism , Ions , Molecular Conformation , Oocytes/metabolism , Protein Domains , Xenopus
3.
Hum Brain Mapp ; 45(1): e26552, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38050776

ABSTRACT

Electroencephalography (EEG) microstate analysis has become a popular tool for studying the spatial and temporal dynamics of large-scale electrophysiological activities in the brain in recent years. Four canonical topographies of the electric field (classes A, B, C, and D) have been widely identified, and changes in microstate parameters are associated with several psychiatric disorders and cognitive functions. Recent studies have reported the modulation of EEG microstate by mental workload (MWL). However, the common practice of evaluating MWL is in a specific task. Whether the modulation of microstate by MWL is consistent across different types of tasks is still not clear. Here, we studied the topographies and dynamics of microstate in two independent MWL tasks: NBack and the multi-attribute task battery (MATB) and showed that the modulation of MWL on microstate topographies and parameters depended on tasks. We found that the parameters of microstates A and C, and the topographies of microstates A, B, and D were significantly different between the two tasks. Meanwhile, all four microstate topographies and parameters of microstates A and C were different during the NBack task, but no significant difference was found during the MATB task. Furthermore, we employed a support vector machine recursive feature elimination procedure to investigate whether microstate parameters were suitable for MWL classification. An averaged classification accuracy of 87% for within-task and 78% for cross-task MWL discrimination was achieved with at least 10 features. Collectively, our findings suggest that topographies and parameters of microstates can provide valuable information about neural activity patterns with a dynamic temporal structure at different levels of MWL, but the modulation of MWL depends on tasks and their corresponding functional systems. Moreover, as a potential indicator, microstate parameters could be used to distinguish MWL.


Subject(s)
Electroencephalography , Mental Disorders , Humans , Electroencephalography/methods , Brain/physiology , Brain Mapping/methods , Cognition
4.
Bioorg Chem ; 148: 107438, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761703

ABSTRACT

The synergism of host Paris polyphylla medium, the monoculture, and the coculture led to seventeen new metabolites, including eight sesquiterpenes, 1-7 having uncommon structural motifs compared to similar caryophyllene derivatives, 8 with an unprecedented bicyclic framework, and three xyloketals (13-15) with unprecedented frameworks from Nigrospora lacticolonia; one polyketide, 17 with novel bicyclo [2.2.2] undecane skeleton, and five polyketide-terpenoid hybrids, 20 (one novel sulfated), 21-24 from Penicillium rubens. The structures were determined mainly by the NMR, HRESIMS, ECD calculation, and single-crystal X-ray diffraction. Nine cryptic compounds (2-4, 5, 12-15, 17) were produced by the inductions of host medium and the coculture. The compounds 13 from N. lacticolonia, 24-26, 28, 29, and 31 from P. rubens indicated significant antiphytopathogenic activities against N. lacticolonia with MICs at 2-4 µg/mL. Moreover, compounds 22-26, 28, 29, and 31 from P. rubens showed antifungal activities against P. rubens with MICs at 2-4 µg/mL. The synergistic effects of host medium and the coculture can induce the structural diversity of metabolites.


Subject(s)
Coculture Techniques , Penicillium , Penicillium/chemistry , Penicillium/metabolism , Penicillium/drug effects , Molecular Structure , Ascomycota/drug effects , Ascomycota/chemistry , Ascomycota/metabolism , Structure-Activity Relationship , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Microbial Sensitivity Tests , Dose-Response Relationship, Drug
5.
J Sci Food Agric ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38872574

ABSTRACT

BACKGROUND: The effect of oleogels prepared with peanut oil and different concentrations of γ-oryzanol and ß-sitosterol mixture (γ/ß; 20, 40, 60, 80 and 100 g kg-1) on the physicochemical and gel properties of myofibrillar protein (MP) was investigated. RESULTS: The solubility and average particle size of MP first decreased and then increased with increasing γ/ß concentration. Peanut oil or oleogels could induce the exposure of hydrophobic amino acids and the unfolding of MP, thus significantly increasing the surface hydrophobicity, sulfhydryl content and absolute value of zeta potential, which reached maximum values when the γ/ß concentration was 60 g kg-1 (P < 0.05). The addition of peanut oil decreased the gel strength and water holding capacity of MP gel. However, oleogels prepared with 60 g kg-1 γ/ß could significantly increase the hydrophobic interactions and disulfide bond content of MP gel (P < 0.05), which promoted the crosslinking and aggregation of MP, enhancing the gel properties. Peanut oil had no significant influence on the secondary structure of MP, while oleogels promoted the transition of MP conformation from α-helix to ß-sheet structure. The results of light microscopy and confocal laser scanning microscopy indicated that oleogels prepared with 60 g kg-1 γ/ß filled in the pores of MP gel network to form denser and more uniform structure. CONCLUSION: Oleogels prepared with 60 g kg-1 γ/ß could effectively improve the quality of MP gel and have promising application prospects in surimi products. © 2024 Society of Chemical Industry.

6.
Fish Physiol Biochem ; 50(3): 927-939, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38305929

ABSTRACT

Temperature fluctuations are inevitable and have an important impact on the survival of fish during transportation. Therefore, the effect of temperature fluctuation (15 ± 1 °C, 15 ± 2 °C, 15 ± 3 °C) on the muscle quality, physiological, and immune function of hybrid pearl gentian grouper before waterless keeping alive, during keeping alive (0 h, 3 h, 6 h, 9 h, 12 h), and after revival for 12 h was investigated. The plasma glucose concentration of grouper gradually decreased to 0.645 ± 0.007 mg/mL, 0.657 ± 0.006 mg/mL, and 0.677 ± 0.004 mg/mL after keeping alive for 12 h under different temperature fluctuations of 15 ± 1 °C, 15 ± 2 °C, and 15 ± 3 °C, respectively. The cortisol concentration and lysozyme activity of pearl gentian grouper significantly increased (P < 0.05) during the keeping alive period. The results suggested that fish bodies would produce acute stress response, strengthen immune defense ability, and quickly consume a lot of energy to adapt to the low-temperature anhydrous environment. In all treatment groups, the activities of plasma alanine transaminase (ALT) and aspartate aminotransferase (AST) and the content of creatinine gradually increased with the prolongation of the survival time. The hardness and springiness of muscle decreased from 5965.99 ± 20.15 and 0.90 ± 0.00 to 3490.69 ± 27.59 and 0.42 ± 0.01, respectively. In the meanwhile, the change of glycogen and lactic acid content was opposite, indicating that temperature fluctuation harmed the liver, kidney function, and muscle quality. In the later stage of keeping alive, the superoxide dismutase (SOD) and catalase (CAT) activities decreased, especially in the temperature fluctuation group of ±3 °C (125.99 ± 5.48 U/mgprot, 44.21 ± 0.63 U/mgprot), leading to an imbalance of fish immunity. In summary, higher temperature fluctuation would influence the physiological function and immune defense ability and decrease the quality of pearl gentian grouper.


Subject(s)
Stress, Physiological , Temperature , Animals , Hydrocortisone/blood , Blood Glucose , Bass/physiology , Muramidase/blood , Muramidase/metabolism , Aspartate Aminotransferases/blood , Alanine Transaminase/blood , Muscles/metabolism , Creatinine/blood
7.
J Biol Chem ; 298(5): 101860, 2022 05.
Article in English | MEDLINE | ID: mdl-35339489

ABSTRACT

The epithelial Na+ channel (ENaC)/degenerin family has a similar extracellular architecture, where specific regulatory factors interact and alter channel gating behavior. The extracellular palm domain serves as a key link to the channel pore. In this study, we used cysteine-scanning mutagenesis to assess the functional effects of Cys-modifying reagents on palm domain ß10 strand residues in mouse ENaC. Of the 13 ENaC α subunit mutants with Cys substitutions examined, only mutants at sites in the proximal region of ß10 exhibited changes in channel activity in response to methanethiosulfonate reagents. Additionally, Cys substitutions at three proximal sites of ß and γ subunit ß10 strands also rendered mutant channels methanethiosulfonate-responsive. Moreover, multiple Cys mutants were activated by low concentrations of thiophilic Cd2+. Using the Na+ self-inhibition response to assess ENaC gating behavior, we identified four α, two ß, and two γ subunit ß10 strand mutations that changed the Na+ self-inhibition response. Our results suggest that the proximal regions of ß10 strands in all three subunits are accessible to small aqueous compounds and Cd2+ and have a role in modulating ENaC gating. These results are consistent with a structural model of mouse ENaC that predicts the presence of aqueous tunnels adjacent to the proximal part of ß10 and with previously resolved structures of a related family member where palm domain structural transitions were observed with channels in an open or closed state.


Subject(s)
Cadmium , Epithelial Sodium Channels , Animals , Cysteine , Epithelial Sodium Channels/chemistry , Epithelial Sodium Channels/genetics , Ions , Mice , Protein Conformation , Sodium/metabolism
8.
Neurobiol Dis ; 183: 106167, 2023 07.
Article in English | MEDLINE | ID: mdl-37230179

ABSTRACT

The past 15 years have witnessed an explosion in the studies of biomolecular condensates that are implicated in numerous biological processes and play vital roles in human health and diseases. Recent findings demonstrate that the microtubule-associated protein tau forms liquid condensates through liquid-liquid phase separation (LLPS) in in vitro experiments using purified recombinant proteins and cell-based experiments. Although in vivo studies are lacking, liquid condensates have emerged as an important assembly state of physiological and pathological tau and LLPS can regulate the function of microtubules, mediate stress granule formation, and accelerate tau amyloid aggregation. In this review, we summarize recent advances in tau LLPS, aiming to unveiling the delicate interactions driving tau LLPS. We further discuss the association of tau LLPS with physiology and disease in the context of the sophisticated regulation of tau LLPS. Deciphering the mechanisms underlying tau LLPS and the liquid-to-solid transition enables rational design of molecules that inhibit or delay the formation of tau solid species, thus providing novel targeted therapeutic strategies for tauopathies.


Subject(s)
Tauopathies , tau Proteins , Humans , tau Proteins/metabolism , Recombinant Proteins , Amyloid , Amyloidogenic Proteins
9.
J Sci Food Agric ; 103(4): 1856-1863, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36305101

ABSTRACT

BACKGROUND: The influence of low oxygen on the biosynthesis of aroma-related esters and alcohols in strawberries has been well revealed. However, how low-oxygen conditions affect other volatile compounds, such as terpenes and furans, is still to be elucidated. RESULTS: The effects of 2 kPa O2 low oxygen on the biosynthesis of aroma in 'Benihoppe' strawberries were comprehensively investigated in this study. The results showed that, like esters, the accumulations of key terpene alcohols and furans in strawberries were also inhibited by 2 kPa O2 low oxygen during storage and subsequent shelf life, which was associated with the down-regulation of expression of FaNES1 (nerolidol synthase) and FaOMT (O-methyltransferase). However, no anaerobic fermentation occurred in 'Benihoppe' strawberries since no ethanol and acetaldehyde were produced under the 2 kPa O2 condition. As expected, the 2 kPa O2 condition suppressed the respiratory intensity and lowered the energy charge to maintain the quality of strawberries. The negative effects of low-oxygen storage on aroma accumulations and the energy charge of strawberries were more pronounced when transferred to the period of shelf life. CONCLUSION: The 2 kPa O2 condition caused a full-scale loss of aroma in 'Benihoppe' strawberries, including esters and alcohols as well as terpenes and furans, which was mainly reflected in the reduction of aroma emissions rather than the production of off-flavor, probably due to the reduced expressions of related genes and energy charge. © 2022 Society of Chemical Industry.


Subject(s)
Fragaria , Volatile Organic Compounds , Odorants , Fragaria/genetics , Fragaria/chemistry , Oxygen/analysis , Fruit/genetics , Fruit/chemistry , Ethanol/analysis , Terpenes/analysis , Esters/analysis , Gene Expression , Volatile Organic Compounds/chemistry
10.
Molecules ; 27(8)2022 Apr 10.
Article in English | MEDLINE | ID: mdl-35458637

ABSTRACT

Quorum sensing (QS) is a cell-to-cell communication process that controls bacterial collective behaviors. The QS network regulates and coordinates bacterial virulence factor expression, antibiotic resistance and biofilm formation. Therefore, inhibition of the QS system is an effective strategy to suppress the bacterial virulence. Herein, we identify a phosphate ester derivative of chrysin as a potent QS inhibitor of the human pathogen Pseudomonas aeruginosa (P. aeruginosa) using a designed luciferase reporter assay. In vitro biochemical analysis shows that the chrysin derivative binds to the bacterial QS regulator LasR and abrogates its DNA-binding capability. In particular, the derivative exhibits higher anti-virulence activity compared to the parent molecule. All the results reveal the potential application of flavone derivative as an anti-virulence compound to combat the infectious diseases caused by P. aeruginosa.


Subject(s)
Flavones , Quorum Sensing , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Biofilms , Flavones/metabolism , Flavones/pharmacology , Humans , Pseudomonas aeruginosa , Virulence Factors/metabolism
11.
Molecules ; 27(13)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35807346

ABSTRACT

Acrylamide (ACR) is formed during tobacco and carbohydrate-rich food heating and is widely applied in many industries, with a range of toxic effects. The antioxidant properties of Lycium ruthenicum polyphenols (LRP) have been established before. This study aimed to research the protective effect of LRP against ACR-induced liver injury in SD rats. Rats were divided into six groups: Control, ACR (40 mg/kg/day, i.g.), LRP (50, 100, and 200 mg/kg/day, i.g.) plus ACR, and LRP groups. After 19 days, we evaluated oxidative status and mitochondrial functions in the rat's liver. The results showed that glutathione (GSH) and superoxide dismutase (SOD) levels increased after LRP pretreatment. In contrast, each intervention group reduced reactive oxygen species (ROS) and malondialdehyde (MDA) levels compared to the ACR group. Meanwhile, alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver mitochondrial ATPase activity, mRNA expression of mitochondrial complex I, III, and expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) and its downstream proteins were all increased. This study suggested that LRP could reduce ACR-induced liver injury through potent antioxidant activity. LRP is recommended as oxidative stress reliever against hepatotoxicity.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Lycium , Acrylamide/metabolism , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Glutathione/metabolism , Liver , Lycium/metabolism , Oxidative Stress , Polyphenols/metabolism , Polyphenols/pharmacology , Rats , Rats, Sprague-Dawley
12.
Am J Physiol Renal Physiol ; 321(2): F245-F254, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34229479

ABSTRACT

Large-conductance K+ (BK) channels expressed in intercalated cells (ICs) in the aldosterone-sensitive distal nephron (ASDN) mediate flow-induced K+ secretion. In the ASDN of mice and rabbits, IC BK channel expression and activity increase with a high-K+ diet. In cell culture, the long isoform of with-no-lysine kinase 1 (L-WNK1) increases BK channel expression and activity. Apical L-WNK1 expression is selectively enhanced in ICs in the ASDN of rabbits on a high-K+ diet, suggesting that L-WNK1 contributes to BK channel regulation by dietary K+. We examined the role of IC L-WNK1 expression in enhancing BK channel activity in response to a high-K+ diet. Mice with IC-selective deletion of L-WNK1 (IC-L-WNK1-KO) and littermate control mice were placed on a high-K+ (5% K+, as KCl) diet for 10 or more days. IC-L-WNK1-KO mice exhibited reduced IC apical + subapical α-subunit expression and BK channel-dependent whole cell currents compared with controls. Six-hour urinary K+ excretion in response a saline load was similar in IC-L-WNK1-KO mice and controls. The observations that IC-L-WNK1-KO mice on a high-K+ diet have higher blood K+ concentration and reduced IC BK channel activity are consistent with impaired urinary K+ secretion, demonstrating that IC L-WNK1 has a role in the renal adaptation to a high-K+ diet.NEW & NOTEWORTHY When mice are placed on a high-K+ diet, genetic disruption of the long form of with no lysine kinase 1 (L-WNK1) in intercalated cells reduced relative apical + subapical localization of the large-conductance K+ channel, blunted large-conductance K+ channel currents in intercalated cells, and increased blood K+ concentration. These data confirm an in vivo role of L-WNK1 in intercalated cells in adaptation to a high-K+ diet.


Subject(s)
Kidney/metabolism , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Nephrons/metabolism , Potassium/metabolism , WNK Lysine-Deficient Protein Kinase 1/metabolism , Animals , Ion Transport , Kidney/cytology , Mice , WNK Lysine-Deficient Protein Kinase 1/genetics
13.
Zhongguo Zhong Yao Za Zhi ; 46(8): 2072-2078, 2021 Apr.
Article in Zh | MEDLINE | ID: mdl-33982522

ABSTRACT

The chemical constituents from the extract of the twigs of Euscaphis konishii with anti-hepatoma activity were investigated, twelve compounds by repeated chromatography with silica gel, Sephadex LH-20 and preparative-HPLC. The structures of the chemical components were elucidated by spectroscopy methods, as konilignan(1),(7R, 8S)-dihydrodehydrodico-niferylalcohol-9-O-ß-D-glucopyranoside(2),illiciumlignan B(3),threo-1-(4-hydroxy-3-methoxyphenyl)-2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]-1,3-panediol(4),erythro-1-(4-hydroxy-3-methoxyphenyl)-2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]-1,3-panediol(5), matairesinol(6), wikstromol(7), isolariciresinol(8),(+)-lyoniresinol(9), 4-ketopinoresinol(10), syringaresin(11), and vladinol D(12). Among them, compound 1 is a new lignan. Compounds 10 and 12 had moderate inhibitory activity on HepG2 cells, with IC_(50) values of 107.12 µmol·L~(-1) and 183.56 µmol·L~(-1), respectively.


Subject(s)
Lignans , Chromatography, High Pressure Liquid , Lignans/pharmacology , Plant Extracts/pharmacology
14.
J Biol Chem ; 294(45): 16765-16775, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31551351

ABSTRACT

Epithelial Na+ channel (ENaC)-mediated Na+ transport has a key role in the regulation of extracellular fluid volume, blood pressure, and extracellular [K+]. Among the thousands of human ENaC variants, only a few exist whose functional consequences have been experimentally tested. Here, we used the Xenopus oocyte expression system to investigate the functional roles of four nonsynonymous human ENaC variants located within the ß7-strand and its adjacent loop of the α-subunit extracellular ß-ball domain. αR350Wßγ and αG355Rßγ channels exhibited 2.5- and 1.8-fold greater amiloride-sensitive currents than WT αßγ human ENaCs, respectively, whereas αV351Aßγ channels conducted significantly less current than WT. Currents in αH354Rßγ-expressing oocytes were similar to those expressing WT. Surface expression levels of three mutants (αR350Wßγ, αV351Aßγ, and αG355Rßγ) were similar to that of WT. However, three mutant channels (αR350Wßγ, αH354Rßγ, and αG355Rßγ) exhibited a reduced Na+ self-inhibition response. Open probability of αR350Wßγ was significantly greater than that of WT. Moreover, other Arg-350 variants, including αR350G, αR350L, and αR350Q, also had significantly increased channel activity. A direct comparison of αR350W and two previously reported gain-of-function variants revealed that αR350W increases ENaC activity similarly to αW493R, but to a much greater degree than does αC479R. Our results indicate that αR350W along with αR350G, αR350L, and αR350Q, and αG355R are novel gain-of-function variants that function as gating modifiers. The location of these multiple functional variants suggests that the αENaC ß-ball domain portion that interfaces with the palm domain of ßENaC critically regulates ENaC gating.


Subject(s)
Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Extracellular Space/metabolism , Ion Channel Gating/genetics , Epithelial Sodium Channels/chemistry , Gene Expression Regulation , Humans , Models, Molecular , Protein Domains
15.
Oral Dis ; 26(6): 1302-1307, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32176822

ABSTRACT

LncRNA MAFG-AS1 is predicted to interact with miR-146a, which can target Toll-like receptor 4 (TLR4), a key player in periodontitis. This study aimed to investigate the roles of MAFG-AS1 in periodontitis. It was observed that MAFG-AS1 was downregulated in the human periodontal ligament stem cells (PDLSCs) derived from periodontitis-affected teeth. Dual-luciferase assay revealed that co-transfection of MAFG-AS1 expression vector and miR-146a mimic showed significantly lower relative luciferase activity comparing to co-transfection of MAFG-AS1 expression vector and negative control (NC) miRNA. However, MAFG-AS1 and miR-146a failed to affect each other. Interestingly, MAFG-AS1 overexpression led to the upregulated TLR4. In addition, MAFG-AS1 overexpression also led to the inhibited proliferation of PDLSCs. Therefore, MAFG-AS1 may regulate the proliferation of PDLSCs and the expression of TLR4 to participate in periodontitis.

16.
J Sci Food Agric ; 100(5): 2252-2260, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-31917477

ABSTRACT

BACKGROUND: Hydrocolloids are the most commonly used additive in the processing of surimi products. However, the effect of hydrocolloids on surimi protein conformation has not been reported, and the level of hydrocolloids may be a key factor influencing the quality of surimi. Therefore, this study investigated the effect of curdlan, xanthan gum, κ-carrageenan, and gelatin at various levels on gel properties and protein conformation of surimi from silver carp. RESULTS: Addition of curdlan, κ-carrageenan, or gelatin at lower level could significantly promote gel strength, textural profiles, and water holding capacity (WHC) of the surimi gels. However, gel strength and WHC gradually decreased with increasing amount of xanthan gum added. The addition of curdlan or κ-carrageenan remarkably increased the whiteness of surimi gel, but the whiteness decreased when the concentration of κ-carrageenan reached 5 g kg-1 . Along with the increase of curdlan, κ-carrageenan, or gelatin concentration, the index of hydrophobic interaction and hydrogen bonds first increased and then decreased, whereas index of ionic bonds first decreased and then increased. According to Raman spectroscopy data, a small content of curdlan or κ-carrageenan promoted the conformational transition of surimi protein from α-helix to ß-sheet, leading to the changes in gel properties of surimi gels. Scanning electron microscopy photographs showed surimi gels added with 4 g kg-1 curdlan or 2 g kg-1 κ-carrageenan had a finer and denser network structure. CONCLUSION: Curdlan or κ-carrageenan at an appropriate concentration is a potential modifier to effectively improve the quality of surimi products. © 2020 Society of Chemical Industry.


Subject(s)
Carps , Colloids/chemistry , Fish Proteins/chemistry , Gels/chemistry , Animals , Carrageenan/chemistry , Fish Products/analysis , Food Additives/chemistry , Food Handling/methods , Gelatin/chemistry , Hydrophobic and Hydrophilic Interactions , Polysaccharides, Bacterial , Protein Structure, Secondary , Water
17.
J Biol Chem ; 293(45): 17582-17592, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30228189

ABSTRACT

The epithelial Na+ channel (ENaC) possesses a large extracellular domain formed by a ß-strand core enclosed by three peripheral α-helical subdomains, which have been dubbed thumb, finger, and knuckle. Here we asked whether the ENaC thumb domains play specific roles in channel function. To this end, we examined the characteristics of channels lacking a thumb domain in an individual ENaC subunit (α, ß, or γ). Removing the γ subunit thumb domain had no effect on Na+ currents when expressed in Xenopus oocytes, but moderately reduced channel surface expression. In contrast, ENaCs lacking the α or ß subunit thumb domain exhibited significantly reduced Na+ currents along with a large reduction in channel surface expression. Moreover, channels lacking an α or γ thumb domain exhibited a diminished Na+ self-inhibition response, whereas this response was retained in channels lacking a ß thumb domain. In turn, deletion of the α thumb domain had no effect on the degradation rate of the immature α subunit as assessed by cycloheximide chase analysis. However, accelerated degradation of the immature ß subunit and mature γ subunit was observed when the ß or γ thumb domain was deleted, respectively. Our results suggest that the thumb domains in each ENaC subunit are required for optimal surface expression in oocytes and that the α and γ thumb domains both have important roles in the channel's inhibitory response to external Na+ Our findings support the notion that the extracellular helical domains serve as functional modules that regulate ENaC biogenesis and activity.


Subject(s)
Epithelial Sodium Channels/metabolism , Protein Subunits/metabolism , Proteolysis , Animals , Epithelial Sodium Channels/chemistry , Epithelial Sodium Channels/genetics , Gene Expression , Humans , Oocytes/metabolism , Protein Domains , Protein Subunits/chemistry , Protein Subunits/genetics , Xenopus laevis
18.
J Cell Biochem ; 120(12): 19345-19357, 2019 12.
Article in English | MEDLINE | ID: mdl-31464068

ABSTRACT

This manuscript aimed to investigate linc-PINT's role as a tumor suppressor and its downstream microRNAs (miRNAs) in esophageal cancer. Log-rank, Cox, and nomogram were used for survival analysis. Quantitative real-time polymerase chain reaction was used to evaluate the expression. Cell counting kit-8 was used for proliferation tests. As for in vivo experiments, low expression of linc-PINT was associated with better prognosis; besides, the nomogram indicated that linc-PINT, miR-543, and miR-576-5p served well in predicting the survival rate. As for the in vitro experiments, linc-PINT could directly regulate miR-543 and miR-576-5p to inhibit the proliferation of Eca-109 cell line. In conclusion, linc-PINT-miR-543/miR-576-5p pathway could predict the prognosis and provide novel therapeutic targets for esophageal cancer.


Subject(s)
Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Cell Line , Cell Line, Tumor , Esophageal Neoplasms/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Humans , MicroRNAs/genetics , Prognosis , RNA, Long Noncoding/genetics
19.
Molecules ; 24(17)2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31484345

ABSTRACT

Pleione (Orchidaceae) is not only famous for the ornamental value in Europe because of its special color, but also endemic in Southern Asia for its use in traditional medicine. A great deal of research about its secondary metabolites and biological activities has been done on only three of 30 species of Pleione. Up to now, 183 chemical compounds, such as phenanthrenes, bibenzyls, glucosyloxybenzyl succinate derivatives, flavonoids, lignans, terpenoids, etc., have been obtained from Pleione. These compounds have been demonstrated to play a significant role in anti-tumor, anti-neurodegenerative and anti-inflammatory biological activities and improve immunity. In order to further develop the drugs and utilize the plants, the chemical structural analysis and biological activities of Pleione are summarized in this review.


Subject(s)
Bibenzyls/chemistry , Orchidaceae/chemistry , Anti-Inflammatory Agents/chemistry , Antineoplastic Agents/chemistry , Drugs, Chinese Herbal/chemistry , Molecular Structure
20.
Am J Physiol Renal Physiol ; 314(3): F483-F492, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29187368

ABSTRACT

Epithelial Na+ channel (ENaC) subunits undergo N-linked glycosylation in the endoplasmic reticulum where they assemble into an αßγ complex. Six, 13, and 5 consensus sites (Asn-X-Ser/Thr) for N-glycosylation reside in the extracellular domains of the mouse α-, ß-, and γ-subunits, respectively. Because the importance of ENaC N-linked glycans has not been fully addressed, we examined the effect of preventing N-glycosylation of specific subunits on channel function, expression, maturation, and folding. Heterologous expression in Xenopus oocytes or Fischer rat thyroid cells with αßγ-ENaC lacking N-linked glycans on a single subunit reduced ENaC activity as well as the inhibitory response to extracellular Na+. The lack of N-linked glycans on the ß-subunit also precluded channel activation by trypsin. However, channel activation by shear stress was N-linked glycan independent, regardless of which subunit was modified. We also discovered that the lack of N-linked glycans on any one subunit reduced the total and surface levels of cognate subunits. The lack of N-linked glycans on the ß-subunit had the largest effect on total levels, with the lack of N-linked glycans on the γ- and α-subunits having intermediate and modest effects, respectively. Finally, channels with wild-type ß-subunits were more sensitive to limited trypsin proteolysis than channels lacking N-linked glycans on the ß-subunit. Our results indicate that N-linked glycans on each subunit are required for proper folding, maturation, surface expression, and function of the channel.


Subject(s)
Epithelial Sodium Channels/metabolism , Protein Processing, Post-Translational , Sodium/metabolism , Animals , Epithelial Sodium Channels/chemistry , Epithelial Sodium Channels/genetics , Glycosylation , Mechanotransduction, Cellular , Membrane Potentials , Mutation , Protein Conformation , Protein Folding , Protein Transport , Rats, Inbred F344 , Structure-Activity Relationship , Trypsin/metabolism , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL