Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters

Publication year range
1.
Fish Shellfish Immunol ; 149: 109560, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615702

ABSTRACT

The JAK (Janus kinase)-STAT (Signal transducer and activator of transcription) is a well-known functional signaling pathway that plays a key role in several important biological activities such as apoptosis, cell proliferation, differentiation, and immunity. However, limited studies have explored the functions of STAT genes in invertebrates. In the present study, the gene sequences of two STAT genes from the Pacific oyster (Crassostrea gigas), termed CgSTAT-Like-1 (CgSTAT-L1) and CgSTAT-Like-2 (CgSTAT-L2), were obtained using polymerase chain reaction (PCR) amplification and cloning. Multiple sequence comparisons revealed that the sequences of crucial domains of these proteins were conserved, and the similarity with the protein sequence of other molluscan STAT is close to 90 %. The phylogenetic analyses indicated that CgSTAT-L1 and CgSTAT-L2 are novel members of the mollusk STAT family. Quantitative real-time PCR results implied that CgSTAT-L1 and CgSTAT-L2 mRNA expression was found in all tissues, and significantly induced after challenge with lipopolysaccharide (LPS), peptidoglycan (PGN), or poly(I:C). After that, dual-luciferase reporter assays denoted that overexpression of CgSTAT-L1 and CgSTAT-L2 significantly activated the NF-κB signaling, and, interestingly, the overexpressed CgSTAT proteins potentiated LPS-induced NF-κB activation. These results contributed a preliminary analysis of the immune-related function of STAT genes in oysters, laying the foundation for deeper understanding of the function of invertebrate STAT genes.


Subject(s)
Amino Acid Sequence , Crassostrea , Phylogeny , STAT Transcription Factors , Sequence Alignment , Animals , Crassostrea/genetics , Crassostrea/immunology , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Sequence Alignment/veterinary , Lipopolysaccharides/pharmacology , Immunity, Innate/genetics , Peptidoglycan/pharmacology , Poly I-C/pharmacology , Base Sequence , Gene Expression Regulation/immunology , Gene Expression Regulation/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , DNA, Complementary/genetics , Cloning, Molecular , Signal Transduction
2.
Fish Shellfish Immunol ; 151: 109697, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38871139

ABSTRACT

Myeloid differentiation factor-88 (MyD88) is a key adaptor of the toll-like receptor (TLR) signaling pathway and plays a crucial role in innate immune signal transduction in animals. However, the MyD88-mediated signal transduction mechanism in shellfish has not been well studied. In this study, a new MyD88 gene, CfMyD88-2, was identified in the Zhikong scallop, Chlamys farreri. The 1779 bp long open reading frame encodes 592 amino acids. The N-terminus of CfMyD88-2 contains a conserved death domain (DD), followed by a TIR (TLR/Interleukin-1 Receptor) domain. The results of the multi-sequence comparison showed that the TIR domain sequences were highly conserved. Phylogenetic analysis revealed that CfMyD88-2 was first associated with Mizuhopecten yessoensis MyD88-4 and Argopecten irradians MyD88-4. CfMyD88-2 mRNA was expressed in all scallop tissues, as detected by qRT-PCR, and the expression level was the highest in the mantle and hepatopancreas. In addition, CfMyD88-2 mRNA expression significantly increased after pathogen-associated molecular patterns (PAMPs, such as lipopolysaccharide, peptidoglycan, or polyinosinic-polycytidylic acid) stimulation. The results of the co-immunoprecipitation experiments in HEK293T cells showed that both CfMyD88-1 and CfMyD88-2 interacted with the TLR protein of scallops, suggesting the existence of more than one functional TLR-MyD88 signaling axis in scallops. Dual luciferase reporter gene assays indicated that the overexpressed CfMyD88-2 in HEK293T cells activated interferon (IFN) α, IFN-ß, IFN-γ, and NF-κB reporter genes, indicating that the protein has multiple functions. The results of the subcellular localization experiment uncovered that CfMyD88-2 was mainly localized in the cytoplasm of human cells. In summary, the novel identified CfMyD88-2 can respond to the challenge of PAMPs, participate in TLR immune signaling, and may activate downstream effector genes such as NF-κB gene. These research results will be useful in advancing the theory of innate immunity in invertebrates and provide a reference for the selection of disease-resistant scallops in the future.

3.
Rapid Commun Mass Spectrom ; 37(15): e9536, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37160630

ABSTRACT

RATIONALE: The high sensitivity of the miniature mass spectrometer plays an irreplaceable role in rapid on-site detection. However, its analysis accuracy and stability should be improved due to the influence of sample pretreatment and use environment. The present study investigates the processing effects of ensemble empirical mode decomposition (EEMD) feature enhancement methods on the determination coefficient (R2 ) and relative standard deviation (RSD) of caffeine mass spectrometry (MS) signals. METHODS: This paper employs the EEMD method combined with polynomial curve fitting to enhance the characteristics of seven caffeine mass spectrum signals with different concentrations and 15 groups of caffeine mass spectrum signals with the same concentration, and the wavelet analysis method was used for comparative verification. The determination coefficient and RSD of the two methods were compared. RESULTS: We found the EEMD method's capability in adaptively decomposing caffeine mass spectrum signals is better than wavelet analysis method. The determination coefficient of the EEMD enhanced feature is better than 0.999, and the RSD is better than 2%, and both are better than wavelet analysis methods. CONCLUSIONS: The feature enhancement processing using the EEMD method has significantly improved the determination coefficient and RSD of the sample curve, improving the accuracy and stability of the data and providing a new way for miniature mass spectrometer signal processing.

4.
Fish Shellfish Immunol ; 132: 108497, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36539167

ABSTRACT

The interferon regulatory factor (IRF) family, a class of transcription factors with key functions, are important in host innate immune defense and stress response. However, further research is required to determine the functions of IRFs in invertebrates. In this study, the coding sequence of an IRF gene was obtained from the Zhikong scallop (Chlamys farreri) and named CfIRF8-like. The open reading frame of CfIRF8-like was 1371 bp long and encoded 456 amino acids. Protein domain prediction revealed a typical IRF domain in the N-terminus of the CfIRF8-like protein and a typical IRF3 domain in the C-terminus. Multiple sequence alignment confirmed the conservation of the amino acid sequences of these two functional protein domains. Phylogenetic analysis showed that CfIRF8-like clustered with mollusk IRF8 proteins and then clustered with vertebrate IRF3, IRF4, and IRF5 subfamily proteins. Quantitative real-time PCR detected CfIRF8-like mRNA in all tested scallop tissues, with the highest expression in the gills. Simultaneously, the expression of CfIRF8-like transcripts in gills was significantly induced by polyinosinic-polycytidylic acid challenge. The results of protein interaction experiments showed that CfIRF8-like could directly bind the TBK1/IKKε family protein of scallop (CfIKK2) via its N-terminal IRF domain, revealing the presence of an ancient functional TBK1/IKKε-IRF signaling axis in scallops. Finally, dual-luciferase reporter assay results showed that the overexpression of CfIRF8-like in human embryonic kidney 293T cells could specifically activate the interferon ß promoter of mammals and the interferon-stimulated response element promoter in dose-dependent manners. The findings of this preliminary analysis of the signal transduction and immune functions of scallop CfIRF8-like protein lay a foundation for an in-depth understanding of the innate immune function of invertebrate IRFs and the development of comparative immunology. The experimental results also provide theoretical support for the breeding of scallop disease-resistant strains.


Subject(s)
Antiviral Agents , I-kappa B Kinase , Animals , Humans , I-kappa B Kinase/genetics , Phylogeny , Immunity, Innate/genetics , Signal Transduction , Mammals/metabolism , Protein Serine-Threonine Kinases/genetics
5.
Fish Shellfish Immunol ; 143: 109188, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37890738

ABSTRACT

Members of the nuclear factor-kappa B (NF-κB) family are crucial regulators of physiological processes such as apoptosis, inflammation, and the immune response, acting as vital transcription factors to perform their function. In this study, we identified a NF-κB homologous gene (CfRel1) in Zhikong scallops. The 3006-bp-long open reading frame encodes 1001 amino acids. The N-terminus of the CfRel1 protein harbors a conserved Rel homology domain (RHD) that contains a DNA-binding domain and a dimerization domain. According to the multiple sequence alignment results, both the DNA-binding and dimerization domains are highly conserved. Phylogenetic analysis indicated that CfRel1 is closely related to both the Dorsal protein of Pinctada fucata and the Rel2 protein of Crassostrea gigas. CfRel1 mRNA was expressed in all tissues tested in the quantitative reverse transcription PCR experiments, with hepatopancreatic tissue expressing the highest levels. Furthermore, after stimulation with lipopolysaccharide, peptidoglycan, or polyinosinic:polycytidylic acid, the mRNA expression level of CfRel1 was markedly increased. The co-immunoprecipitation test results showed that CfRel1 interacted with scallop IκB protein through its RHD DNA-binding domain, suggesting that IκB may regulate the activity of Rel1 by binding to this domain. Dual-luciferase reporter gene assays revealed that CfRel1 overexpression in HEK293T cells activated the activator protein 1 (AP-1), NF-κB, interferon (IFN)α, IFNß, and IFNγ reporter genes, indicating the diverse functions of the protein. In summary, CfRel1 is capable of responding to attacks from pathogen-associated molecular patterns, participating in immune signaling, and activating NF-κB and IFN reporter genes. Our findings contribute to the advancement of invertebrate innate immunity theory, enrich the theory of comparative immunology, and serve as a reference for the future screening of disease-resistant strains in scallops.


Subject(s)
Crassostrea , Pectinidae , Humans , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Phylogeny , HEK293 Cells , DNA , RNA, Messenger/metabolism
6.
Mem Cognit ; 51(6): 1388-1403, 2023 08.
Article in English | MEDLINE | ID: mdl-36853480

ABSTRACT

In daily life, we often need to inhibit a certain behavior or thought; however, sometimes we need to remove inhibition (deinhibition). Numerous studies have examined inhibition control, but it is unclear how deinhibition functions. In Experiment 1, we adopted a modified stop-signal task in which participants were instructed to immediately stop the prepared response to a stimulus appended by an accidental signal. The results showed that when the preceding trial was a stop-signal trial and participants successfully inhibited the action to the stimulus, the reaction time (RT) for the repeated stimuli in the current trial was significantly longer than that of the switched stimuli, reflecting the cost of deinhibition. Deinhibition ability is correlated with inhibitory control and cognitive flexibility. In Experiment 2, we manipulated stimulus onset asynchrony (SOA) between presentation of the stimuli and the stopping signals to exclude the interference of the signal preparation effect on the deinhibition cost. These findings suggest that an individual's deinhibition ability, as a previously ignored subcomponent of cognitive control, may play an important role in human adaptive behavior.


Subject(s)
Cognition , Inhibition, Psychological , Humans , Reaction Time/physiology , Psychomotor Performance/physiology
7.
Altern Ther Health Med ; 29(8): 918-923, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37773650

ABSTRACT

Background: Isolated pulmonary nodules (SPNs) are small, circular lesions within lung tissue, often challenging to diagnose due to their size and lack of typical imaging features. Timely diagnosis is crucial for treatment decisions. However, the difficulty in qualitative diagnosis necessitates clinical biopsies. Objective: This study aimed to assess the diagnostic accuracy of CT-guided percutaneous lung biopsy for SPNs and identify potential risk factors for malignancy. Methods: We conducted a retrospective analysis of 112 patients with SPNs who underwent CT-guided core needle biopsy (CT-CNB) between June 2020 and June 2022. Histological and cytological results were obtained for all patients, and clinical data and imaging characteristics were compared between benign and malignant SPN groups. Binary logistic regression was used to analyze risk factors for malignancy, and complications were observed. Results: Cytological and histological specimens were successfully obtained for all patients. The cohort consisted of 43 patients with benign SPNs and 69 with malignant SPNs. Among the malignant SPN group, 67 cases were confirmed via CT-CNB and 2 through surgery, resulting in a sensitivity of 97.10% and specificity of 100.00%. The malignant nodules comprised 45 adenocarcinomas, 14 squamous cell carcinomas, 8 metastatic tumors, and 2 small cell carcinomas. Notably, 2 initially diagnosed as malignant cases were found to have chronic inflammation on preoperative biopsy but revealed adenocarcinoma and squamous cell carcinoma post-surgery. The benign nodules encompassed 20 granulomatous inflammation cases, 15 chronic inflammation, 3 fungal granulomas, 2 hamartomas, and 1 fibrous tissue. Cytological smears exhibited a sensitivity of 81.3% and a specificity of 100.0% for malignancy. Significantly, age ≥60, elevated tumor markers, and specific imaging signs (burr, foliation, pleural pull) were identified as risk factors for malignant SPNs using Binary Logistic regression (all P < .05). Conclusions: CT-guided percutaneous lung biopsy demonstrates excellent diagnostic efficacy and safety for distinguishing benign and malignant SPNs.


Subject(s)
Adenocarcinoma , Lung Neoplasms , Solitary Pulmonary Nodule , Humans , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/pathology , Retrospective Studies , Lung Neoplasms/diagnostic imaging , Lung/diagnostic imaging , Tomography, X-Ray Computed/methods , Biopsy , Adenocarcinoma/pathology , Inflammation
8.
Curr Psychol ; : 1-12, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37359575

ABSTRACT

It has been traditionally thought that children can obtain resources that promote their academic performance through their parents' involvement. However, in reality, parents' involvement in their children's education may threaten children with an excessive academic burden. This study argues that parental involvement is both empowering and burdensome for children and proposes a model in which parental involvement is a double-edged sword. The model entails two paths, one in which learning constitutes a burden and another in which learning leads to empowerment. Based on a survey of 647 adolescents, a structural equation model is used to test this hypothesis. The results suggest that parental involvement can negatively impact academic performance because children feel more stressed as a result of the increase in academic expectations; parental involvement also has a positively impact on academic performance because of an increase in children's engagement in learning. The above results provide some practical guidance for parents' involvement in their children's education. Supplementary Information: The online version contains supplementary material available at 10.1007/s12144-023-04589-y.

9.
Fish Shellfish Immunol ; 124: 490-496, 2022 May.
Article in English | MEDLINE | ID: mdl-35487402

ABSTRACT

Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are a class of pattern recognition receptors located in the cytoplasm that play a key role in antiviral innate immunity in animals. However, few studies have been conducted on the function of RLR proteins in invertebrates. In this study, the complete coding sequence of the RLR gene of the Zhikong scallop, Chlamys farreri, was obtained and named CfRLR1 with an aim to study the response of CfRLR1 to polyinosinic:polycytidylic acid [poly (I:C)] stimulation and the interaction between the CfRLR1 and C. farreri mitochondrial antiviral signaling (MAVS) protein. Sequence analysis revealed that CfRLR1 encodes 1161 amino acids, and the encoded protein covers two tandem caspase activation and recruitment domains (CARDs), a helicase domain, and a C-terminal regulatory domain. Phylogenetic analysis revealed that CfRLR1 belongs to the RLR family of mollusks. Quantitative real-time polymerase chain reaction showed that CfRLR1 mRNA was expressed in all tested tissues, with its highest expression observed in feet and gill tissues. Furthermore, CfRLR1 expression in the gill tissues was significantly induced after the poly (I:C) challenge. Finally, the results of co-immunoprecipitation and yeast two-hybrid assays revealed that CfRLR1 can bind to the CfMAVS protein via CARD-CARD interactions. Overall, our results elucidate the immune function of invertebrate RLR proteins and provide valuable information on viral disease control for scallop farming.


Subject(s)
Pectinidae , Animals , Antiviral Agents/metabolism , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Immunity, Innate/genetics , Phylogeny , Poly I-C/pharmacology , Proteins/genetics
10.
Fish Shellfish Immunol ; 123: 290-297, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35306177

ABSTRACT

Nonylphenol (NP) is an endocrine disruptor and environmental hormone representing alkylphenol compounds. Marine mollusks are an important source of protein for people worldwide. Many researchers have begun to study the effect of NP on marine mollusks immune system in view of its toxicity; however, the underlying molecular mechanisms require in-depth analysis. In this study, we focused on the transcriptional expression change of immune-related genes and antioxidant enzymes activities variation after NP exposure in a marine bivalve mollusk, Chlamys farreri, to explore the immunomodulatory capacity of NP in marine mollusks. We identified MAVS (Mitochondrial antiviral signaling protein), a key adaptor molecule in the RLR (RIG-I like receptor) pathway, and studied the expression of multiple immune-related genes in response to different concentrations of NP. The key genes involved in RLR/TLR (Toll like receptor) innate immune pathway, apoptosis, and cellular antioxidation mechanism were investigated. Changes in the enzymatic activities of scallop antioxidant enzymes after NP exposure were also examined. The results revealed that the genes expression and the antioxidant enzymes activities show significant changes, thus proving that NP stimulation affects the scallop immune system. Our research results demonstrate the immunomodulatory capacity of NP in marine bivalve mollusks and lay the foundation for further in-depth analysis of the molecular mechanism of NP toxicity.


Subject(s)
Antioxidants , Pectinidae , Animals , Immune System , Immunity, Innate/genetics , Pectinidae/genetics , Phenols/toxicity
11.
Fish Shellfish Immunol ; 128: 238-245, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35940537

ABSTRACT

The LGP2 (Laboratory of Genetics and Physiology 2) protein is a member of the retinoic acid-inducible gene I (RIG-I)-like receptor (RLRs) family, which is a class of antiviral pattern recognition receptors located in the cytoplasm. However, few studies have investigated the function of LGP2 in invertebrates. In this study, the complete coding sequence of the LGP2 gene of the Pacific oyster, Crassostrea gigas, was obtained and named CgLGP2-like. Sequence analysis revealed that CgLGP2-like encodes 803 amino acids, and the encoded protein contains a DEXDc, HELICc, and C-terminal regulatory domains. Multiple sequence alignment demonstrated that the sequences of these key protein functional domains were relatively conserved. Phylogenetic analysis revealed that CgLGP2-like was a new member of the animal LGP2 family. Quantitative real-time PCR results showed that CgLGP2-like mRNA was expressed in all tested oyster tissues, with the highest expression observed in the labial palpus and digestive glands. CgLGP2-like expression in gill tissues was significantly induced after the poly(I:C) challenge. Furthermore, multiple IRF and NF-κB binding sites were identified in the CgLGP2-like promoter region, which may be one of the reasons why CgLGP2-like responds to poly(I:C) stimulation. Finally, the results of dual-luciferase reporter gene assays revealed that overexpression of CgLGP2-like may have a regulatory effect on the human IFN, AP-1, and oyster CgIL-17 genes in HEK293T cells. Overall, our results preliminarily elucidate the immune functions of invertebrate LGP2 protein and provide valuable information for the development of comparative immunology.


Subject(s)
Crassostrea , RNA Helicases/genetics , Amino Acids/metabolism , Animals , Gene Expression Regulation , HEK293 Cells , Humans , Immunity, Innate , Luciferases/metabolism , NF-kappa B/metabolism , Phylogeny , Poly I-C/pharmacology , RNA Helicases/chemistry , RNA Helicases/metabolism , RNA, Messenger/metabolism , Receptors, Pattern Recognition/genetics , Transcription Factor AP-1/genetics , Tretinoin/metabolism
12.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(8): 2238-43, 2014 Aug.
Article in Zh | MEDLINE | ID: mdl-25474969

ABSTRACT

In the present paper, apparatus and theory of surface analysis is introduced, and the progress in the application of laser ablation ICP-MS to microanalysis in ferrous, nonferrous and semiconductor field is reviewed in detail. Compared with traditional surface analytical tools, such as SEM/EDS (scanning electron microscopy/energy dispersive spectrum), EPMA (electron probe microanalysis analysis), AES (auger energy spectrum), etc. the advantage is little or no sample preparation, adjustable spatial resolution according to analytical demand, multi-element analysis and high sensitivity. It is now a powerful complementary method to traditional surface analytical tool. With the development of LA-ICP-MS technology maturing, more and more analytical workers will use this powerful tool in the future, and LA-ICP-MS will be a super star in elemental analysis field just like LIBS (Laser-induced breakdown spectroscopy).

13.
Int J Biol Macromol ; 256(Pt 1): 128319, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000607

ABSTRACT

Interferon regulatory factor (IRF) family proteins are key transcription factors involved in vital physiological processes such as immune defense. However, the function of IRF in invertebrates, especially in marine shellfish is not clear. In this study, a new IRF gene (CfIRF2) was identified in the Zhikong scallop, Chlamys farreri, and its immune function was analyzed. CfIRF2 has an open reading frame of 1107 bp encoding 368 amino acids. The N-terminus of CfIRF2 consists of a typical IRF domain, with conserved amino acid sequences. Phylogenetic analysis suggested close evolutionary relationship with shellfish IRF1 subfamily proteins. Expression pattern analysis showed that CfIRF2 mRNA was expressed in all tissues, with the highest expression in the hepatopancreas and gills. CfIRF2 gene expression was substantially enhanced by a pathogenic virus (such as acute viral necrosis virus) and poly(I:C) challenge. Co-immunoprecipitation assay identified CfIRF2 interaction with the IKKα/ß family protein CfIKK1 of C. farreri, demonstrating a unique signal transduction mechanism in marine mollusks. Moreover, CfIRF2 interacted with itself to form homologous dimers. Overexpression of CfIRF2 in HEK293T cells activated reporter genes containing interferon stimulated response elements and NF-κB genes in a dose-dependent manner and promoted the phosphorylation of protein kinases (JNK, Erk1/2, and P38). Our results provide insights into the functions of IRF in mollusks innate immunity and also provide valuable information for enriching comparative immunological theory for the prevention of diseases in scallop farming.


Subject(s)
NF-kappa B , Pectinidae , Humans , Animals , NF-kappa B/metabolism , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Phylogeny , HEK293 Cells , Pectinidae/genetics , Immunity, Innate/genetics
14.
Int J Biol Macromol ; 275(Pt 1): 133645, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38964686

ABSTRACT

Fas-associated protein with death domain (FADD) was initially identified as a crucial adaptor protein in the apoptotic pathway mediated by death receptor (DR). Subsequently, many studies have confirmed that FADD plays a vital role in innate immunity and inflammatory responses in animals. However, the function of this pleiotropic molecule in mollusk species has not been well explored. In this study, we successfully verified the gene sequence of FADD in the Zhikong scallop (Chlamys farreri) and designated it as CfFADD. The CfFADD protein contains a conserved death effector and death domains. Phylogenetic analysis showed that CfFADD is a novel addition to the molluscan FADD family with a close evolutionary relationship with molluscan FADD subfamily proteins. CfFADD mRNA expression in various scallop tissues was significantly induced by challenge with pathogen-associated molecular patterns (lipopolysaccharide, peptidoglycan, and poly(I:C)), suggesting its role in innate immunity in scallops. Co-immunoprecipitation showed that CfFADD interacted with the scallop DR (tumor necrosis factor receptor) and a signaling molecule involved in the Toll-like receptor pathway (interleukin-1 receptor-associated kinase), confirming that CfFADD may be involved in DR-mediated apoptosis and innate immune signaling pathways. Further studies showed that CfFADD interacted with CfCaspase-8 and activated caspase-3. HEK293T cells exhibited distinct apoptotic features after transfection with a CfFADD-expression plasmid, suggesting a functional DR-FADD-caspase apoptotic pathway in scallops. Overexpression of CfFADD led to a significant dose-dependent activation of interferon ß and nuclear factor-κB reporter genes, demonstrating the key role of CfFADD in innate immunity. In summary, our research has confirmed the critical roles of CfFADD in innate immunity and apoptosis and provides valuable information for developing comparative immunology theories.

15.
Int J Biol Macromol ; 259(Pt 2): 129184, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218284

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, with a high incidence in squamous epithelium. The E3 ubiquitin ligase DTL is a component of the CRL4A complex and is widely involved in tumor progression. We aimed to analyze the role of DTL in HNSCC and to explore its mechanism of action. Through clinical analysis, we found that DTL is upregulated in HNSCC tissues and is associated with the tumor microenvironment and poor survival in patients. Through gain-of-function and loss-of-function assays, we showed that DTL promotes cell proliferation and migration in vitro and tumor growth in vivo. Mass spectrometry analysis and immunoprecipitation assays showed that DTL interacts with ARGLU1 to promote K11-linked ubiquitination-mediated degradation of ARGLU1, thereby promoting the activation of the CSL-dependent Notch signaling pathway. Furthermore, siARGLU1 blocks the inhibitory effects of DTL knockdown on HNSCC cells. In this study, we showed that DTL promotes HNSCC progression through K11-linked ubiquitination of ARGLU1 to activate the CSL-dependent Notch pathway. These findings identify a promising therapeutic target for HNSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Head and Neck Neoplasms/genetics , Carcinoma, Squamous Cell/genetics , Signal Transduction , Cell Proliferation , Cell Line, Tumor , Tumor Microenvironment , Nuclear Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
16.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(12): 3383-7, 2013 Dec.
Article in Zh | MEDLINE | ID: mdl-24611407

ABSTRACT

In the present paper, under optimum experimental condition, two middle-low alloy slab and homogeneous samples were analyzed under the condition of spatial resolution about 100 microm by scanning mode. Element 2D intensity distribution can be converted into 2D concentration distribution via establishing calibration curve. The results showed that there is a central segregation for C, Si, Mn, P, S and Cu for 86 # slab sample, and C, Si, P and Ti for 174 # slab sample, the width of segregation band was estimated, and it agrees well with metallographic analysis. Homogeneous sample was analyzed by scanning mode, the result showed that C, Si, Mn, P, S and so on are well distributed, and there is no segregation band existing. 2D distribution of element intensity or concentration can be used to indirectly reflect sample's homogeneity. Compared with traditional metallographic analysis, LIBS can not only show central segregation bands position and width, but also provide 2D concentration distribution for C, Si, Mn, P, S etc in detail. This method can be used to characterize segregation band position and its width rapidly, and provide theoretical guidance for improving metallurgical process.

17.
Article in English | MEDLINE | ID: mdl-36981613

ABSTRACT

Since COVID-19 was officially listed as a pandemic, online schooling has become a more pervasive form of learning, and cyberloafing has become a widespread behavior, even among adolescents. However, less research has explored the influencing mechanism of adolescents' cyberloafing. Based on relevant studies and the real lives of adolescents, this study aimed to examine the association between a competitive class climate and cyberloafing among adolescents, its underlying mechanism, the mediating role of perceived stress and the moderating role of self-esteem. A total of 686 adolescents were recruited to complete a set of questionnaires assessing cyberloafing, perceived stress, self-esteem, and perceived competitive class climate. The results showed that a competitive class climate was positively associated with perceived stress, and the U-shaped relationship between perceived stress and cyberloafing was significant. Perceived stress mediated the relationship between a competitive class climate and cyberloafing. Meanwhile, self-esteem moderated the U-shaped relationship between perceived stress and cyberloafing and the linear relationship between a competitive class climate and perceived stress. The results of this study indicate that the influence of a competitive class climate on individual learning behavior may be nonlinear, and proper competition can contribute to reducing individual cyberloafing.


Subject(s)
East Asian People , Education, Distance , Adolescent , Humans , Self Concept , Surveys and Questionnaires , Competitive Behavior , Stress, Psychological
18.
Behav Sci (Basel) ; 13(9)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37754010

ABSTRACT

This study explored the effects of social networking site use intensity, upward social comparison, and optimism on college students' conspicuous consumption and their mechanisms of action using a sample of Chinese college students. A total of 717 Chinese college students (M = 20.08, SD = 1.44; 73.9% female) completed the Social Network Use Intensity Scale, the Upward Social Comparison Scale, the Life Orientation Test, and the Conspicuous Consumption Scale. The results indicate that (1) the intensity of use of social networking sites significantly positively predicts the conspicuous consumption behavior of college students; (2) upward social comparison plays a mediating role between the intensity of social networking site usage and conspicuous consumption; and (3) optimism moderates the second half of the mediating path between the intensity of social networking site use, upward social comparison, and conspicuous consumption. Specifically, the relationship between upward social comparison and conspicuous consumption among college students with low optimism levels is stronger than that among college students with high levels of optimism. Intensity has a stronger positive effect on conspicuous consumption through upward social comparison. It is concluded that the intensity of college students' use of social networking sites can affect their conspicuous consumption behavior through upward social comparison, and this relationship is moderated by optimism. The results of the study help to reveal the influence of SNS (social networking site) use behavior on conspicuous consumption and its mechanism of action and have implications for reducing the negative impact of conspicuous consumption on college students.

19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(6): 1441-6, 2012 Jun.
Article in Zh | MEDLINE | ID: mdl-22870615

ABSTRACT

As a truly surface analytical tool, laser-induced breakdown spectroscopy (LIBS) was developed in recent ten years, and in this paper, fundamental theory, instrumentation and it's applications in material science are reviewed in detail. Application progress of elemental distribution and depth profile analysis are mainly discussed in the field of metallurgy, semiconductor and electronical materials at home and abroad. It is pointed out that the pulse energy, ambient gas and it's pressure, and energy distribution of laser beam strongly influence spatial and depth resolution, and meanwhile a approach to improving resolution considering analytical sensitivity is provided. Compared with traditional surface analytical methods, the advantage of LIBS is very large scanning area, high analytical speed, and that conducting materials or non-conducting materials both can be analyzed. It becomes a powerful complement of traditional surface analytical tool.

20.
Front Behav Neurosci ; 16: 846369, 2022.
Article in English | MEDLINE | ID: mdl-35668866

ABSTRACT

Task switching is one of the typical paradigms to study cognitive control. When switching back to a recently inhibited task (e.g., "A" in an ABA sequence), the performance is often worse compared to a task without N-2 task repetitions (e.g., CBA). This difference is called the backward inhibitory effect (BI effect), which reflects the process of overcoming residual inhibition from a recently performed task (i.e., deinhibition). The neural mechanism of backward inhibition and deinhibition has received a lot of attention in the past decade. Multiple brain regions, including the frontal lobe, parietal, basal ganglia, and cerebellum, are activated during deinhibition. The event-related potentials (ERP) studies have shown that deinhibition process is reflected in the P1/N1 and P3 components, which might be related to early attention control, context updating, and response selection, respectively. Future research can use a variety of new paradigms to separate the neural mechanisms of BI and deinhibition.

SELECTION OF CITATIONS
SEARCH DETAIL