Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Opt Express ; 29(17): 27871-27881, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34615193

ABSTRACT

We investigated the characteristics of chaos-modulated pulses amplified by a pulsed master oscillator power amplifier (MOPA) for application in a new chaos lidar system in this study. Compared with the loss modulation applied in a continuous-wave (CW) time-gating scheme, the pulsed MOPA scheme could generate chaos-modulated pulses with much higher peak power, resulting in an improved peak-to-standard deviation of sidelobe level (PSLstd) in correlation-based lidar detection. When the pulsed MOPA scheme was applied at a duty cycle of 0.1% and pulse repetition frequency of 20 kHz, which correspond to specifications compliant with eye safety regulations, it outperformed the CW time-gating scheme with respect to PSLstd by 15 dB. For the first time, we applied the chaos lidar system with the pulsed MOPA scheme to execute high-resolution, high-precision three-dimensional (3D) face profiling from a distance of 5 m. We also added the corresponding PSLstd value to each pixel in the point clouds to generate false-color images; thus, we obtained 3D images of a scene with multiple objects at a range of up to 20 m.

2.
Opt Express ; 28(16): 24037-24046, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32752389

ABSTRACT

We generate and analyze chaos-modulated pulses based on a gain-switched semiconductor laser subject to delay-synchronized optical feedback for pulsed chaos lidar applications. Benefited by the aperiodic and uncorrelated chaos waveforms, chaos lidar possesses the advantages of no range ambiguity and immunity to interference and jamming. To improve the detection range while in compliance with the eye-safe regulation, generating chaos-modulated pulses with higher peak power rather than chaos in its CW form is desired. While using an acousto-optic modulator to time-gate the CW chaos into pulses could be lossy and energy inefficient, in this paper, we study the generation of chaos-modulated pulses using a gain-switched laser subject to delay-synchronized optical feedback. Under different feedback strengths and modulation currents of gain-switching, we investigate the quality of the chaos-modulated pulses generated by analyzing their ratio of chaos oscillations, peak sidelobe levels (PSLs), and cross-correlation peaks under different mismatching conditions between the pulse repetition interval (PRI) and the feedback time delay τ. With proper feedback strengths and modulation currents, we find that synchronizing the gain-switching modulation with the delayed feedback (PRI = τ) is essential in generating the chaos-modulated pulses suitable for the pulsed chaos lidar applications. When mismatching occurs, we identify sequences of dynamical periods including stable, periodic, and chaos oscillations evolved within a pulse.

3.
Opt Express ; 26(9): 12230-12241, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-29716136

ABSTRACT

We develop an unprecedented 3D pulsed chaos lidar system for potential intelligent machinery applications. Benefited from the random nature of the chaos, conventional CW chaos lidars already possess excellent anti-jamming and anti-interference capabilities and have no range ambiguity. In our system, we further employ self-homodyning and time gating to generate a pulsed homodyned chaos to boost the energy-utilization efficiency. Compared to the original chaos, we show that the pulsed homodyned chaos improves the detection SNR by more than 20 dB. With a sampling rate of just 1.25 GS/s that has a native sampling spacing of 12 cm, we successfully achieve millimeter-level accuracy and precision in ranging. Compared with two commercial lidars tested side-by-side, namely the pulsed Spectroscan and the random-modulation continuous-wave Lidar-lite, the pulsed chaos lidar that is in compliance with the class-1 eye-safe regulation shows significantly better precision and a much longer detection range up to 100 m. Moreover, by employing a 2-axis MEMS mirror for active laser scanning, we also demonstrate real-time 3D imaging with errors of less than 4 mm in depth.

4.
Nanomaterials (Basel) ; 13(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36839029

ABSTRACT

The monolithic integration of InGaN-based micro-LEDs is being of interest toward developing full-color micro-displays. However, the color stability in InGaN red micro-LED is an issue that needs to be addressed. In this study, the modified distributed Bragg reflectors (DBRs) were designed to reduce the transmission of undesired spectra. The calculated optical properties of the InGaN red micro-LEDs with conventional and modified DBRs have been analyzed, respectively. The CIE 1931 color space and the encoded 8-bit RGB values are exhibited for the quantitative assessment of color stability. The results suggest the modified DBRs can effectively reduce the color shift, paving the way for developing full-color InGaN-based micro-LED displays.

5.
Phytomedicine ; 23(6): 641-53, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27161405

ABSTRACT

BACKGROUND: Catharanthus roseus (L.) G. Don consists of a range of dimeric indole alkaloids with significant antitumor activities. These alkaloids have been found to possess apoptosis-inducing activity against tumor cells in vitro and in vivo mediated by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and c-Jun N-terminal kinase (JNK) pathways, in which DNA damage and mitochondrial dysfunction play important roles. In this study, a unique bisindole alkaloid named cathachunine, along with five known dimeric indole alkaloids, was obtained from C. roseus and investigated in vitro. PURPOSE: The aim of this study was to investigate the antitumor activity of isolated alkaloids and the mechanism through which cathachunine exerts its antitumor effect. STUDY DESIGN AND METHODS: Cell growth inhibition was assessed by WST-1 and lactate dehydrogenase (LDH) assays in HL60, K562 leukemia cells and EA.hy926 umbilical vein cells. Induction of apoptosis in HL60 cells was confirmed by observation of nuclear morphology, a caspase-3 activity assay and annexin V-fluorescein isothiocyanate/propidium iodide (FITC/PI) double staining. The intrinsic apoptotic pathway induced by cathachunine was evidenced by B-cell lymphoma 2/Bcl-2-associated X protein (Bcl-2/Bax) dysregulation, loss of mitochondrial membrane potential, translocation of cytochrome c, and cleavage of caspase-3 and poly-ADP ribose polymerase (PARP). Reactive oxygen species (ROS) production after cathachunine treatment was determined by 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining. Cell cycle arrest of the S phase was also observed in HL60 cells after cathachunine treatment. RESULTS: The WST-1 and LDH assays showed that Catharanthus alkaloids were cytotoxic toward human leukemia cells to a greater extent than toward normal human endothelial cells, and the anti-proliferation and pro-apoptosis abilities of cathachunine were much more potent than other previously reported alkaloids. The induction of apoptosis by cathachunine occurred through an ROS-dependent mitochondria-mediated intrinsic pathway rather than an extrinsic pathway, and was regulated by the Bcl-2 protein family. CONCLUSION: An unprecedented bisindole alkaloid cathachunine which lost C-18' and C-19' was isolated from C. roseus. It exerted a potent antitumor effect toward human leukemia cells through the induction of apoptosis via an intrinsic pathway. Thus, this study provides evidence for a new lead compound from a natural source for anti-cancer investigations.


Subject(s)
Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Leukemia/drug therapy , Plant Extracts/pharmacology , Antineoplastic Agents/therapeutic use , Catharanthus/chemistry , China , Humans , K562 Cells/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL