Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 809
Filter
Add more filters

Publication year range
1.
Nature ; 610(7933): 656-660, 2022 10.
Article in English | MEDLINE | ID: mdl-36289385

ABSTRACT

Proposed mechanisms for the production of calcium in the first stars (population III stars)-primordial stars that formed out of the matter of the Big Bang-are at odds with observations1. Advanced nuclear burning and supernovae were thought to be the dominant source of the calcium production seen in all stars2. Here we suggest a qualitatively different path to calcium production through breakout from the 'warm' carbon-nitrogen-oxygen (CNO) cycle through a direct experimental measurement of the 19F(p, γ)20Ne breakout reaction down to a very low energy point of 186 kiloelectronvolts, reporting a key resonance at 225 kiloelectronvolts. In the domain of astrophysical interest2, at around 0.1 gigakelvin, this thermonuclear 19F(p, γ)20Ne rate is up to a factor of 7.4 larger than the previous recommended rate3. Our stellar models show a stronger breakout during stellar hydrogen burning than previously thought1,4,5, and may reveal the nature of calcium production in population III stars imprinted on the oldest known ultra-iron-poor star, SMSS0313-67086. Our experimental result was obtained in the China JinPing Underground Laboratory7, which offers an environment with an extremely low cosmic-ray-induced background8. Our rate showcases the effect that faint population III star supernovae can have on the nucleosynthesis observed in the oldest known stars and first galaxies, which are key mission targets of the James Webb Space Telescope9.

2.
Cell Mol Life Sci ; 81(1): 182, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38615283

ABSTRACT

BACKGROUND: Stem cell therapy is a promising therapeutic strategy. In a previous study, we evaluated tumorigenicity by the stereotactic transplantation of neural stem cells (NSCs) and embryonic stem cells (ESCs) from experimental mice. Twenty-eight days later, there was no evidence of tumor formation or long-term engraftment in the NSCs transplantation group. In contrast, the transplantation of ESCs caused tumor formation; this was due to their high proliferative capacity. Based on transcriptome sequencing, we found that a long intergenic non-coding RNA (named linc-NSC) with unknown structure and function was expressed at 1100-fold higher levels in NSCs than in ESCs. This finding suggested that linc-NSC is negatively correlated with stem cell pluripotency and tumor development, but positively correlated with neurogenesis. In the present study, we investigated the specific role of linc-NSC in NSCs/ESCs in tumor formation and neurogenesis. METHODS: Whole transcriptome profiling by RNA sequencing and bioinformatics was used to predict lncRNAs that are widely associated with enhanced tumorigenicity. The expression of linc-NSC was assessed by quantitative real-time PCR. We also performed a number of in vitro methods, including cell proliferation assays, differentiation assays, immunofluorescence assays, flow cytometry, along with in vivo survival and immunofluorescence assays to investigate the impacts of linc-NSC on tumor formation and neurogenesis in NSCs and ESCs. RESULTS: Following the knockdown of linc-NSC in NSCs, NSCs cultured in vitro and those transplanted into the cortex of mice showed stronger survival ability (P < 0.0001), enhanced proliferation(P < 0.001), and reduced apoptosis (P < 0.05); the opposite results were observed when linc-NSC was overexpressed in ESCs. Furthermore, the overexpression of linc-NSC in ECSs induced enhanced apoptosis (P < 0.001) and differentiation (P < 0.01), inhibited tumorigenesis (P < 0.05) in vivo, and led to a reduction in tumor weight (P < 0.0001). CONCLUSIONS: Our analyses demonstrated that linc-NSC, a promising gene-edited target, may promote the differentiation of mouse NSCs and inhibit tumorigenesis in mouse ESCs. The knockdown of linc-NSC inhibited the apoptosis in NSCs both in vitro and in vivo, and prevented tumor formation, revealing a new dimension into the effect of lncRNA on low survival NSCs and providing a prospective gene manipulation target prior to transplantation. In parallel, the overexpression of linc-NSC induced apoptosis in ESCs both in vitro and in vivo and attenuated the tumorigenicity of ESCs in vivo, but did not completely prevent tumor formation.


Subject(s)
Embryonic Stem Cells , Neural Stem Cells , Animals , Mice , Prospective Studies , Cell Differentiation/genetics , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Apoptosis/genetics , Cell Proliferation/genetics
3.
Am J Physiol Cell Physiol ; 326(6): C1697-C1709, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38586875

ABSTRACT

Alzheimer's disease (AD) is the leading cause of dementia and presents a considerable disease burden. Its pathology involves substantial neuronal loss, primarily attributed to neuronal apoptosis. Although sirtuin 4 (SIRT4) has been implicated in regulating apoptosis in various diseases, the role of SIRT4 in AD pathology remains unclear. The study used APP/PS1 mice as an animal model of AD and amyloid-ß (Aß)1-42-treated HT-22 cells as an AD cell model. SIRT4 expression was determined by quantitative real-time polymerase chain reaction, Western blot, and immunofluorescence. A Sirt4 knockdown model was established by intracranial injection of lentivirus-packaged sh-SIRT4 and cellular lentivirus transfection. Immunohistochemistry and flow cytometry were used to examine Aß deposition in mice and apoptosis, respectively. Protein expression was assessed by Western blot analysis. The UCSC and JASPAR databases were used to predict upstream transcription factors of Sirt4. Subsequently, the binding of transcription factors to Sirt4 was analyzed using a dual-luciferase assay and chromatin immunoprecipitation. SIRT4 expression was upregulated in both APP/PS1 mice and Aß-treated HT-22 cells compared with their respective control groups. Sirt4 knockdown in animal and cellular models of AD resulted in reduced apoptosis, decreased Aß deposition, and amelioration of learning and memory impairments in mice. Mechanistically, SIRT4 modulates apoptosis via the mTOR pathway and is negatively regulated by the transcription factor signal transducer and activator of transcription 2 (STAT2). Our study findings suggest that targeting the STAT2-SIRT4-mTOR axis may offer a new treatment approach for AD.NEW & NOTEWORTHY The study reveals that in Alzheimer's disease models, SIRT4 expression increases, contributing to neuronal apoptosis and amyloid-ß deposition. Reducing SIRT4 lessens apoptosis and amyloid-ß accumulation, improving memory in mice. This process involves the mTOR pathway, regulated by STAT2 transcription factor. These findings suggest targeting the STAT2-SIRT4-mTOR axis as a potential Alzheimer's treatment strategy.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Apoptosis , Disease Models, Animal , Mice, Transgenic , Neurons , STAT2 Transcription Factor , Signal Transduction , Sirtuins , TOR Serine-Threonine Kinases , Animals , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Sirtuins/metabolism , Sirtuins/genetics , TOR Serine-Threonine Kinases/metabolism , Mice , Neurons/metabolism , Neurons/pathology , STAT2 Transcription Factor/metabolism , STAT2 Transcription Factor/genetics , Amyloid beta-Peptides/metabolism , Humans , Male , Mice, Inbred C57BL , Cell Line , Mitochondrial Proteins
4.
Mol Cancer ; 23(1): 111, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778348

ABSTRACT

BACKGROUND: Poly (ADP-ribose) polymerase inhibitor (PARPi) resistance poses a significant challenge in ovarian carcinoma (OC). While the role of DOT1L in cancer and chemoresistance is acknowledged, its specific role in PARPi resistance remains unclear. This study aims to elucidate the molecular mechanism of DOT1L in PARPi resistance in OC patients. METHODS: This study analyzed the expression of DOT1L in PARPi-resistant cell lines compared to sensitive ones and correlated it with clinical outcomes in OC patients. Comprehensive in vitro and in vivo functional experiments were conducted using cellular and mouse models. Molecular investigations, including RNA sequencing, chromatin immunoprecipitation (ChIP) and Cleavage Under Targets and Tagmentation (CUT&Tag) assays, were employed to unravel the molecular mechanisms of DOT1L-mediated PARPi resistance. RESULTS: Our investigation revealed a robust correlation between DOT1L expression and clinical PARPi resistance in non-BRCA mutated OC cells. Upregulated DOT1L expression in PARPi-resistant tissues was associated with diminished survival in OC patients. Mechanistically, we identified that PARP1 directly binds to the DOT1L gene promoter, promoting transcription independently of its enzyme activity. PARP1 trapping induced by PARPi treatment amplified this binding, enhancing DOT1L transcription and contributing to drug resistance. Sequencing analysis revealed that DOT1L plays a crucial role in the transcriptional regulation of PLCG2 and ABCB1 via H3K79me2. This established the PARP1-DOT1L-PLCG2/ABCB1 axis as a key contributor to PARPi resistance. Furthermore, we discovered that combining a DOT1L inhibitor with PARPi demonstrated a synergistic effect in both cell line-derived xenograft mouse models (CDXs) and patient-derived organoids (PDOs). CONCLUSIONS: Our results demonstrate that DOT1L is an independent prognostic marker for OC patients. The PARP1-DOT1L/H3K79me2-PLCG2/ABCB1 axis is identified as a pivotal contributor to PARPi resistance. Targeted inhibition of DOT1L emerges as a promising therapeutic strategy for enhancing PARPi treatment outcomes in OC patients.


Subject(s)
Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Ovarian Neoplasms , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors , Xenograft Model Antitumor Assays , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/mortality , Female , Drug Resistance, Neoplasm/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Animals , Mice , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Prognosis , Histone-Lysine N-Methyltransferase
5.
BMC Plant Biol ; 24(1): 511, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38844870

ABSTRACT

The invasion of Mikania micrantha by climbing and covering trees has rapidly caused the death of many shrubs and trees, seriously endangering forest biodiversity. In this study, M. micrantha seedlings were planted together with local tree species (Cryptocarya concinna) to simulate the process of M. micrantha climbing under the forest. We found that the upper part of the M. micrantha stem lost its support after climbing to the top of the tree, grew in a turning and creeping manner, and then grew branches rapidly to cover the tree canopy. Then, we simulated the branching process through turning treatment. We found that a large number of branches had been formed near the turning part of the M. micrantha stem (TP). Compared with the upper part of the main stem (UP), the contents of plant hormones (auxin, cytokinin, gibberellin), soluble sugars (sucrose, glucose, fructose) and trehalose-6-phosphate (T6P) were significantly accumulated at TP. Further combining the transcriptome data of different parts of the main stem under erect or turning treatment, a hypothetical regulation model to illustrate how M. micrantha can quickly cover trees was proposed based on the regulation of sugars and hormones on plant branching; that is, the lack of support after ascending the top of the tree led to turning growth of the main stem, and the enhancement of sugars and T6P levels in the TP may first drive the release of nearby dormant buds. Plant hormone accumulation may regulate the entrance of buds into sustained growth and maintain the elongation of branches together with sugars to successfully covering trees.


Subject(s)
Introduced Species , Mikania , Trees , Mikania/growth & development , Trees/growth & development , Plant Growth Regulators/metabolism
6.
Cytokine ; 173: 156442, 2024 01.
Article in English | MEDLINE | ID: mdl-37995395

ABSTRACT

PURPOSE: The characteristics of cytokine/chemokine(CK) profiles across different courses of chronic hepatitis B virus infection and the effects of NAs antiviral therapy on cytokine profiles remain unclear. METHODS: This report provides evidence from 383 patients with chronic HBV infection. The Luminex multiple cytokine detection technology was used to detect CK profiles. The predictive power of CKs across course of disease was assessedusing univariate analyses and with receiver operating characteristic (ROC) curves. RESULTS: Compared to healthy control (HC), expression levels of interleukin 6 (IL)-6, IL-8, IL-21, matrix metalloproteinases (MMP)-2 and tumor necrosis factor receptor (TNFR)-1 showed a significant increasing trend during chronic HBV infection. IL-23 and IL-33 increased respectively in chronic hepatitis B patients (CHB). interferon (IFN)-gamma and TNF-α changed significantly only in liver cirrhosis (LC) patients. Whereas, myeloid-related markers decreased dramatically in those with hepatocellular carcinoma (HCC). The ROC result suggests that combining IL-6, IL-8, CXCL9 and CXCL13 into a nomogram has closely correlation with HCC during chronic HBV infection. In addition, nucleotide analogues (NAs) antiviral treatments are capable of recoveringnormal liver functions and significantly reducing the viral loads, however, they seem to have a limited effect in changing CKs, especially specific antiviral factors. CONCLUSION: The differential CK and virological markers may serve as potential indicators of distinct immune statuses in chronic HBV infection. They also underscore the varying efficacy and limitations of NAs antiviral therapies. This next step would to break new ground in the optimization of current anti-HBV treatment programs although this requires further research.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B, Chronic , Liver Neoplasms , Humans , Hepatitis B virus , Nucleotides , Interleukin-8 , Cytokines/metabolism , Antiviral Agents/therapeutic use
7.
Cancer Cell Int ; 24(1): 144, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654350

ABSTRACT

BACKGROUND: Breast cancer is the most common cancer in women worldwide. Toxoplasma gondii (T. gondii) has shown anticancer activity in breast cancer mouse models, and exerted beneficial effect on the survival of breast cancer patients, but the mechanism was unclear. METHODS: The effect of tachyzoites of T. gondii (RH and ME49 strains) on human breast cancer cells (MCF-7 and MDA-MB-231 cells) proliferation and migration was assessed using cell growth curve and wound healing assays. Dual RNA-seq was performed for T. gondii-infected and non-infected cells to determine the differentially expressed genes (DEGs). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction Networks analysis (PPI) were performed to explore the related signaling pathway and hub genes. Hub genes were validated using the Kaplan-Meier plotter database, and Pathogen Host Interaction (PHI-base) database. The results were verified by qRT-PCR. RESULTS: The tachyzoites of T. gondii decreased the expression of Ki67 and increased the expression of E-cadherin, resulting in suppressing the proliferation and migration of infected human breast cancer cells. The inhibitory effect of T. gondii on breast cancer cells showed a significant dose-response relationship. Compared with the control group, 2321 genes were transcriptionally regulated in MCF-7 cells infected with T. gondii, while 169 genes were transcriptionally regulated in infected MDA-MB-231 cells. Among these genes, 698 genes in infected MCF-7 cells and 67 genes in infected MDA-MB-231 cells were validated by the publicly available database. GO and KEGG analyses suggested that several pathways were involved in anticancer function of T. gondii, such as ribosome, interleukin-17 signaling, coronavirus disease pathway, and breast cancer pathway. BRCA1, MYC and IL-6 were identified as the top three hub genes in infected-breast cancer cells based on the connectivity of PPI analysis. In addition, after interacting with breast cancer cells, the expression of ROP16 and ROP18 in T. gondii increased, while the expression of crt, TgIST, GRA15, GRA24 and MIC13 decreased. CONCLUSIONS: T. gondii transcriptionally regulates several signaling pathways by altering the hub genes such as BRCA1, MYC and IL-6, which can inhibit the breast tumor growth and migration, hinting at a potential therapeutic strategy.

8.
Chemistry ; 30(30): e202400157, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38520385

ABSTRACT

Up to now, the mainstream adoption of renewable energy has brought about substantial transformations in the electricity and energy sector. This shift has garnered considerable attention within the scientific community. Supercapacitors, known for their exceptional performance metrics like good charge/discharge capability, strong power density, as well as extended cycle longevity, have gained widespread traction across various sectors, including transportation and aviation. Metal-organic frameworks (MOFs) with unique traits including adaptable structure, highly customizable synthetic methods, and high specific surface area, have emerged as strong candidates for electrode materials. For enhancing the performance, MOFs are commonly compounded with other conducting materials to increase capacitance. This paper provides a detailed analysis of various common preparation strategies and characteristics of MOFs. It summarizes the recent application of MOFs and their derivatives as supercapacitor electrodes alongside other carbon materials, metal compounds, and conductive polymers. Additionally, the challenges encountered by MOFs in the realm of supercapacitor applications are thoroughly discussed. Compared to previous reviews, the content of this paper is more comprehensive, offering readers a deeper understanding of the diverse applications of MOFs. Furthermore, it provides valuable suggestions and guidance for future progress and development in the field of MOFs.

9.
FASEB J ; 37(8): e23047, 2023 08.
Article in English | MEDLINE | ID: mdl-37392373

ABSTRACT

Diabetic cardiomyopathy (DCM) is one of the main complications in type I diabetic patients. Activated macrophage is critical for directing the process of inflammation during the development of DCM. The present study focused on the roles of CD226 on macrophage function during the DCM progression. It has been found that the number of cardiac macrophages in the hearts of streptozocin (STZ)-induced diabetes mice was significantly increased compared with that in non-diabetes mice, and the expression level of CD226 on cardiac macrophages in STZ-induced diabetes mice was higher than that in non-diabetes mice. CD226 deficiency attenuated the diabetes-induced cardiac dysfunction and decreased the proportion of CD86+ F4/80+ macrophages in the diabetic hearts. Notably, adoptive transfer of Cd226-/- - bone marrow derived macrophages (BMDMs) alleviated diabetes-induced cardiac dysfunction, which may be due to the attenuated migration capacity of Cd226-/- -BMDM under high glucose stimulation. Furthermore, CD226 deficiency decreased the macrophage glycolysis accompanying by the downregulated hexokinase 2 (HK2) and lactate dehydrogenase A (LDH-A) expression. Taken together, these findings revealed the pathogenic roles of CD226 played in the process of DCM and provided a basis for the treatment of DCM.


Subject(s)
Antigens, Differentiation, T-Lymphocyte , Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Animals , Mice , Diabetes Mellitus, Experimental/complications , Glycolysis , Heart , Macrophages , Antigens, Differentiation, T-Lymphocyte/genetics
10.
Langmuir ; 40(21): 11239-11250, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38751154

ABSTRACT

Water is the lifeblood of everything on earth, nourishing and nurturing all forms of life, while also contributing to the development of civilization. However, with the rapid development of economic construction, especially the accelerated process of modern industrialization, the pollution of oily sewage is becoming increasingly serious, affecting the ecological balance and human health. The efficient elimination of pollutants in sewage is, therefore, particularly urgent. In this paper, a core-shell microbial reactor (MPFA@CNF-SA-AM) was fabricated by using nanocellulose and sodium alginate (SA) particles embedded with microorganisms as the core and lipophilic and hydrophobic fly ash as the outer shell layer. Compared with that of free microorganisms and cellulose and SA aerogel pellets loading with microorganisms (CNF-SA-AM), which has a degradation efficiency of 60.69 and 82.89%, respectively, the MPFA@CNF-SA-AM possesses a highest degradation efficiency of 90.60% within 240 h. So that this self-floating microbial reactor has selective adsorption properties to achieve oil-water separation in oily wastewater and high effective degradation of organic pollutants with low cost. The adsorption curves of MPFA@CNF-SA-AM for diesel and n-hexadecane were studied. The results showed that the adsorption follows the Freundlich model and is a multimolecular layer of physical adsorption. In addition, the degradation mechanism of diesel oil was studied by gas chromatography-mass spectrometry. The results showed that diesel oil was selectively adsorbed to the interior of MPFA@CNF-SA-AM, and it was degraded by enzymes in microorganisms into n-hexadecanol, n-hexadecaldehyde, and n-hexadecanoic acid in turn, and finally converted to water and carbon dioxide. Compared with existing oily wastewater treatment methods, this green and pollution-free dual-functional core-shell microbial reactor has the characteristics of easy preparation, high efficiency, flexibility, and large-scale degradation. It provides a new, effective green choice for oily wastewater purification and on-site oil spill accidents.


Subject(s)
Wastewater , Adsorption , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Alginates/chemistry , Cellulose/chemistry , Oils/chemistry , Biodegradation, Environmental , Polymers/chemistry
11.
Langmuir ; 40(9): 4739-4750, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38373152

ABSTRACT

The degradation of organic dye from waterbodies is of great significance for clean production and environmental remediation. Herein, two porphyrin-based conjugated microporous polymers (CMPs) loaded with nanoscale zerovalent iron (named as Por-CMPs-1-2@nZVI) were successfully fabricated by Sonogashira-Hagihara coupling reactions and the liquid-phase method. The as-synthesized Por-CMPs-1-2@nZVI composites were characterized by various means of analysis, and it was confirmed that Por-CMPs-1-2 loaded with nZVI had good photocatalytic performance. Calculated by ultraviolet-visible spectrum, the band-gap energies of Por-CMPs-1@nZVI and Por-CMPs-2@nZVI were 1.45 and 1.32 eV, respectively, indicating that both can be activated by visible light. The photodegradation of organic dye experiments demonstrated that Por-CMPs-2@nZVI degraded 98.0% of 10 ppm Methylene Blue (MB) within 150 min, which is higher than that of Por-CMPs-1-2 and Por-CMPs-1@nZVI. The experiment of active substance capture and mechanism of ESR confirmed that superoxide anion and hydroxyl radical were the primary valid substances in the photodegradation process of MB. In addition, the preparation of membrane materials was shown to be a successful strategy to realize engineered scale-up production.

12.
Int J Behav Nutr Phys Act ; 21(1): 17, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355565

ABSTRACT

BACKGROUND: How physical activity (PA) and different sleep traits and overall sleep pattern interact in the development of Parkinson's disease (PD) remain unknown. OBJECTIVE: To prospectively investigate the joint associations of PA and sleep pattern with risk of PD. METHODS: Included were 339,666 PD-free participants from the UK Biobank. Baseline PA levels were grouped into low (< 600 MET-mins/week), medium (600 to < 3000 MET-mins/week) and high (≥ 3000 MET-mins/week) according to the instructions of the UK Biobank. Healthy sleep traits (chronotype, sleep duration, insomnia, snoring, and daytime sleepiness) were scored from 0 to 5 and were categorized into "ideal sleep pattern" (≥ 3 sleep scores) and "poor sleep pattern" (0-2 sleep scores). Hazard ratios (HRs) and 95% confidence intervals (CIs) of PD were estimated by Cox proportional hazards models. RESULTS: During a median of 11.8 years of follow-up, 1,966 PD events were identified. The PD risk was lower in participants with high PA (HR = 0.73; 95% CI: 0.64, 0.84), compared to those with low PA; and participants with ideal sleep pattern also had a lower risk of PD (HR = 0.78; 95% CI: 0.69, 0.87), compared to those with poor sleep pattern. When jointly investigating the combined effect, participants with both high PA and ideal sleep pattern had the lowest risk of incident PD (HR = 0.55; 95% CI: 0.44, 0.69), compared to those with low PA and poor sleep pattern; notably, participants with high PA but poor sleep pattern also gained benefit on PD risk reduction (HR = 0.74; 95% CI: 0.55, 0.99). CONCLUSIONS: Both high PA and ideal sleep pattern were independently associated with lower risk of developing PD, and those with both high PA level and ideal sleep pattern had the lowest risk. Our results suggest that improving PA levels and sleep quality may be promising intervention targets for the prevention of PD.


Subject(s)
Parkinson Disease , Humans , Cohort Studies , Parkinson Disease/epidemiology , Sleep , Exercise , Risk Reduction Behavior , Risk Factors
13.
Cell Biol Int ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825780

ABSTRACT

Ferroptosis is a novel form of programmed cell death and is considered to be a druggable target for colorectal cancer (CRC) therapy. However, the role of ferroptosis in CRC and its underlying mechanism are not fully understood. In the present study we found that a protein enriched in the Golgi apparatus, Golgi phosphoprotein 3 (GOLPH3), was overexpressed in human CRC tissue and in several CRC cell lines. The expression of GOLPH3 was significantly correlated with the expression of ferroptosis-related genes in CRC. The overexpression of GOLPH3 in Erastin-induced Caco-2 CRC cells reduced ferroptotic phenotypes, whereas the knockdown of GOLPH3 potentiated ferroptosis in HT-29 CRC cells. GOLPH3 induced the expression of prohibitin-1 (PHB1) and prohibitin-2 (PHB2), which also inhibited ferroptosis in Erastin-treated CRC cells. Moreover, GOLPH3 interacted with PHB2 and nuclear factor erythroid 2-related factor 2 (NRF2) in Caco-2 cells. These observations indicate that GOLPH3 is a negative regulator of ferroptosis in CRC cells. GOLPH3 protects these cells from ferroptosis by inducing the expression of PHB1 and PHB2, and by interacting with PHB2 and NRF2.

14.
Analyst ; 149(5): 1618-1631, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38299740

ABSTRACT

In the assay for Brucella, the identification and differentiation of wild strains and vaccine strains present a significant challenge. Currently, there aren't any commercially available product to address this issue. In this study, we have developed a novel gated nanoprobe by utilizing Metal-Organic Frameworks (MOFs) as a scaffold and hairpin DNA as a "gating switch". Specifically, Probe 1 with hairpin structure (P1h) targets a gene that is present in both wild strains Y3 (B. melitensis biovar 3) and vaccine strains A19 (Brucella abortus strains A19). We successfully applied this probe to screen positive samples of Brucella without any cross-reactivity with other substances. Additionally, we identified another specific gene exclusively found in wild strains, which serves as Probe 2 with hairpin structure (P2h) to confirm the strain type. Simultaneous detachment of both P1h and P2h from the MOFs leads to the release of Rhodamine 6G (Rho 6G) and Fluorescein (Flu), specifically indicating the presence of wild strains. If only P1h detaches and the Flu signal is detected, it suggests the presence of vaccine strains. Importantly, this method offers high accuracy, with a detection rate of 90% and a recovery rate of 94.71% to 107.65%, while avoiding cross-reactions with MO and TB. This one-step experiment provides reliable identification and differentiation of Y3 and A19, addressing concerns related to long periodicity, interference from individual variations, and the complex design of primers in existing laboratory methods. Furthermore, our approach successfully detects target 1 (T1) and target 2 (T2) at concentrations ranging from 10-6 M to 10-9 M, with a detection limit of 6.7 × 10-10 M and 6.4 × 10-10 M, respectively. Importantly, our strategy is cost-effective (around $1) and offers higher detection efficiency compared to traditional laboratory methods.


Subject(s)
Metal-Organic Frameworks , Vaccines , Brucella abortus/genetics , DNA Primers , DNA, Bacterial
15.
Inorg Chem ; 63(15): 6714-6722, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38557020

ABSTRACT

Converting CO2 into valuable chemicals via sustainable energy sources is indispensable for human development. Photothermal catalysis combines the high selectivity of photocatalysis and the high yield of thermal catalysis, which is promising for CO2 reduction. However, the present photothermal catalysts suffer from low activity due to their poor light absorption ability and fast recombination of photogenerated electrons and holes. Here, a TiO2@Bi2WO6 heterojunction photocatalyst featuring a hierarchical hollow structure was prepared by an in situ growth method. The visible light absorption and photothermal effect of the TiO2@Bi2WO6 photocatalyst is promoted by a hierarchical hollow structure, while the recombination phenomenon is significantly mitigated due to the construction of the heterojunction interface and the existence of excited Bi(3-x)+ sites. Such a catalyst exhibits excellent photothermal performance with a CO yield of 43.7 µmol h-1 g-1, which is 15 and 4.7 times higher than that of pure Bi2WO6 and that of physically mixed TiO2/Bi2WO6, respectively. An in situ study shows that the pathway for the transformation of CO2 into CO over our TiO2@Bi2WO6 proceeds via two important intermediates, including COO- and COOH-. Our work provides a new idea of excited states for the design and synthesis of highly efficient photothermal catalysts for CO2 conversion.

16.
Int Urogynecol J ; 35(2): 369-380, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37966496

ABSTRACT

INTRODUCTION AND HYPOTHESIS: The objective was to evaluate the morphological characteristics of pelvic floor structure specific to de novo stress urinary incontinence (SUI) in primiparous women using three-dimensional (3D) reconstruction fusion technology based on static MRI combined with dynamic MRI. METHODS: Eighty-one primiparous women after the first vaginal delivery were studied, 40 with SUI and 41 without SUI. 3D reconstruction models based on static MRI were used to describe the anatomical abnormalities of pelvic floor tissues. Dynamic MRI was used to describe segmental activities of the urethra and vagina. The relationship between the morphometry and postpartum SUI was evaluated by logistic regression analysis and receiver operator characteristic curve. RESULTS: The differences in the distance from the bladder neck to the pubic symphysis (BSD), the angle between the posterior wall of the urethra and the anterior wall of the vagina, the width of the distal region of the vagina, urethral length, urethral compression muscle volume (CUV), and pubovisceral muscle volume, puborectal muscle volume, were measured, and except for the extremity of the anterior urethral wall, the total displacements (TDs) of the other sites between the two groups were statistically significant (p < 0.05). Logistic regression analysis showed that the BSD decreased, the CUV decreased, the TDs of the first site and the eighth site increment correlated significantly with postpartum SUI occurrence (p < 0.05). CONCLUSIONS: 3D reconstruction fusion technology provides an important support for a precise assessment of the pelvic floor dysfunction. The BSD, CUV, and iliococcygeus muscle volume have certain values in predicting de novo SUI after first vaginal birth.


Subject(s)
Urinary Incontinence, Stress , Female , Humans , Pregnancy , Urinary Incontinence, Stress/diagnostic imaging , Urinary Incontinence, Stress/etiology , Urethra/diagnostic imaging , Pelvic Floor/diagnostic imaging , Urinary Bladder , Delivery, Obstetric/adverse effects
17.
Neurol Sci ; 45(6): 2729-2736, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38233596

ABSTRACT

BACKGROUND: Aspiration is a common complication of poststroke dysphagia (PSD) and is associated with poor prognosis and mortality. There is no uniform criterion for determining aspiration associated with dysphagia. The aim of this study was to identify early predictors of aspiration, leading to the development of a simple nomogram for identifying aspiration risk associated with dysphagia in hospitalized patients after stroke. METHODS: Demographic information and clinical characteristics of 330 patients with PSD in the training cohort were utilized to develop a nomogram. The LASSO regression method was used to screen variables, and logistic regression was used to construct the nomogram. Internal validation was performed with bootstrap in the training cohort, and external validation was performed in the validation cohort of another 82 patients. The area under the curve (AUC), calibration curves, and decision curve analysis (DCA) were used to evaluate the performance of the nomogram. RESULTS: Seven variables were selected based on LASSO and multivariate logistic regression. The AUC of the nomogram was 0.834 (95% CI, 0.790-0.878) in the training cohort, 0.806 (95% CI, 0.791-0.880) in the internal validation cohort, and 0.882 (95% CI, 0.810-0.954) in the external validation cohort, which indicated that the model had good discrimination. The calibration and DCA curves showed that the nomogram had good accuracy and clinical utility. CONCLUSIONS: In this study, we established a nomogram that can be used to identify the risk of aspiration associated with dysphagia after stroke, and patients may benefit from early screening and preventive care.


Subject(s)
Deglutition Disorders , Nomograms , Stroke , Humans , Deglutition Disorders/etiology , Deglutition Disorders/diagnosis , Male , Female , Stroke/complications , Aged , Middle Aged , Hospitalization , Respiratory Aspiration/etiology , Respiratory Aspiration/diagnosis , Cohort Studies , Aged, 80 and over , Retrospective Studies
18.
BMC Pediatr ; 24(1): 11, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38178076

ABSTRACT

Community-acquired bacterial meningitis (CABM) is the main cause of morbidity and mortality in children. The epidemiology of CABM is regional and highly dynamic. To clarify the diagnostic status and epidemiological characteristics of children with CABM in this region, and pay attention to the disease burden, so as to provide evidence for the prevention and treatment of CABM. By retrospective case analysis, the clinical data of 918 CABM cases in children aged 0-14 years in Zhejiang Province from January, 2019 to December, 2020 were collected. The etiological diagnosis rate of CABM in children was 23.1%, the annual incidence rate 4.42-6.15/100,000, the annual mortality rate 0.06-0.09/100,000,the cure and improvement rate 94.4%, and the case fatality rate 1.4%. The total incidence of neuroimaging abnormalities was 20.6%. The median length of stay for CABM children was 20(16) days, with an average cost of 21,531(24,835) yuan. In addition, the incidence rate was decreased with age. Escherichia coli(E.coli) and group B Streptococcus agalactiae(GBS) were the principal pathogens in CABM infant<3 months(43.3%, 34.1%), and Streptococcus pneumoniae(S. pneumoniae) was the most common pathogen in children ≥ 3 months(33.9%). In conclusion, the annual incidence and mortality of CABM in children aged 0-14 years in Zhejiang Province are at intermediate and low level. The distribution of CABM incidence and pathogen spectrum are different in age; the incidence of abnormal neuroimaging is high; and the economic burden is heavy.


Subject(s)
Meningitis, Bacterial , Child , Infant , Humans , Retrospective Studies , Meningitis, Bacterial/diagnosis , Meningitis, Bacterial/epidemiology , Meningitis, Bacterial/drug therapy , Streptococcus pneumoniae , Streptococcus agalactiae , Escherichia coli , Incidence
19.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674036

ABSTRACT

CX3CL1, also named fractalkine or neurotactin, is the only known member of the CX3C chemokine family that can chemoattract several immune cells. CX3CL1 exists in both membrane-anchored and soluble forms, with each mediating distinct biological activities. CX3CL1 signals are transmitted through its unique receptor, CX3CR1, primarily expressed in the microglia of the central nervous system (CNS). In the CNS, CX3CL1 acts as a regulator of microglia activation in response to brain disorders or inflammation. Recently, there has been a growing interest in the role of CX3CL1 in regulating cell adhesion, chemotaxis, and host immune response in viral infection. Here, we provide a comprehensive review of the changes and function of CX3CL1 in various viral infections, such as human immunodeficiency virus (HIV), SARS-CoV-2, influenza virus, and cytomegalovirus (CMV) infection, to highlight the emerging roles of CX3CL1 in viral infection and associated diseases.


Subject(s)
Chemokine CX3CL1 , Virus Diseases , Chemokine CX3CL1/metabolism , Humans , Virus Diseases/metabolism , Virus Diseases/immunology , Virus Diseases/virology , Animals , COVID-19/virology , COVID-19/metabolism , COVID-19/immunology , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Microglia/metabolism , Microglia/virology , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/genetics
20.
J Environ Manage ; 350: 119613, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38007931

ABSTRACT

Accurate forecasting of water quality variables in river systems is crucial for relevant administrators to identify potential water quality degradation issues and take countermeasures promptly. However, pure data-driven forecasting models are often insufficient to deal with the highly varying periodicity of water quality in today's more complex environment. This study presents a new holistic framework for time-series forecasting of water quality parameters by combining advanced deep learning algorithms (i.e., Long Short-Term Memory (LSTM) and Informer) with causal inference, time-frequency analysis, and uncertainty quantification. The framework was demonstrated for total nitrogen (TN) forecasting in the largest artificial lakes in Asia (i.e., the Danjiangkou Reservoir, China) with six-year monitoring data from January 2017 to June 2022. The results showed that the pre-processing techniques based on causal inference and wavelet decomposition can significantly improve the performance of deep learning algorithms. Compared to the individual LSTM and Informer models, wavelet-coupled approaches diminished well the apparent forecasting errors of TN concentrations, with 24.39%, 32.68%, and 41.26% reduction at most in the average, standard deviation, and maximum values of the errors, respectively. In addition, a post-processing algorithm based on the Copula function and Bayesian theory was designed to quantify the uncertainty of predictions. With the help of this algorithm, each deterministic prediction of our model can correspond to a range of possible outputs. The 95% forecast confidence interval covered almost all the observations, which proves a measure of the reliability and robustness of the predictions. This study provides rich scientific references for applying advanced data-driven methods in time-series forecasting tasks and a practical methodological framework for water resources management and similar projects.


Subject(s)
Algorithms , Water Quality , Uncertainty , Bayes Theorem , Reproducibility of Results , Forecasting
SELECTION OF CITATIONS
SEARCH DETAIL