Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Cell ; 180(4): 645-654.e13, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32004460

ABSTRACT

Drugs selectively targeting CB2 hold promise for treating neurodegenerative disorders, inflammation, and pain while avoiding psychotropic side effects mediated by CB1. The mechanisms underlying CB2 activation and signaling are poorly understood but critical for drug design. Here we report the cryo-EM structure of the human CB2-Gi signaling complex bound to the agonist WIN 55,212-2. The 3D structure reveals the binding mode of WIN 55,212-2 and structural determinants for distinguishing CB2 agonists from antagonists, which are supported by a pair of rationally designed agonist and antagonist. Further structural analyses with computational docking results uncover the differences between CB2 and CB1 in receptor activation, ligand recognition, and Gi coupling. These findings are expected to facilitate rational structure-based discovery of drugs targeting the cannabinoid system.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , Receptor, Cannabinoid, CB2/chemistry , Signal Transduction , Animals , Binding Sites , CHO Cells , Cannabinoid Receptor Agonists/chemical synthesis , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Antagonists/chemical synthesis , Cannabinoid Receptor Antagonists/pharmacology , Cricetinae , Cricetulus , Cryoelectron Microscopy , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Humans , Molecular Docking Simulation , Protein Binding , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Receptor, Cannabinoid, CB2/metabolism , Sf9 Cells , Spodoptera
2.
Brief Bioinform ; 22(4)2021 07 20.
Article in English | MEDLINE | ID: mdl-33051641

ABSTRACT

Delineating the fingerprint or feature vector of a receptor/protein will facilitate the structural and biological studies, as well as the rational design and development of drugs with high affinities and selectivity. However, protein is complicated by its different functional regions that can bind to some of its protein partner(s), substrate(s), orthosteric ligand(s) or allosteric modulator(s) where cogent methods like molecular fingerprints do not work well. We here elaborate a scoring-function-based computing protocol Molecular Complex Characterizing System to help characterize the binding feature of protein-ligand complexes. Based on the reported receptor-ligand interactions, we first quantitate the energy contribution of each individual residue which may be an alternative of MD-based energy decomposition. We then construct a vector for the energy contribution to represent the pattern of the ligand recognition at a receptor and qualitatively analyze the matching level with other receptors. Finally, the energy contribution vector is explored for extensive use in similarity and clustering. The present work provides a new approach to cluster proteins, a perspective counterpart for determining the protein characteristics in the binding, and an advanced screening technique where molecular docking is applicable.


Subject(s)
Proteins/chemistry , Software , Binding Sites , Ligands , Molecular Docking Simulation , Protein Binding , Proteins/metabolism
3.
Brief Bioinform ; 22(2): 882-895, 2021 03 22.
Article in English | MEDLINE | ID: mdl-32715315

ABSTRACT

Given the scale and rapid spread of the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent need for medicines that can help before vaccines are available. In this study, we present a viral-associated disease-specific chemogenomics knowledgebase (Virus-CKB) and apply our computational systems pharmacology-target mapping to rapidly predict the FDA-approved drugs which can quickly progress into clinical trials to meet the urgent demand of the COVID-19 outbreak. Virus-CKB reuses the underlying platform of our DAKB-GPCRs but adds new features like multiple-compound support, multi-cavity protein support and customizable symbol display. Our one-stop computing platform describes the chemical molecules, genes and proteins involved in viral-associated diseases regulation. To date, Virus-CKB archived 65 antiviral drugs in the market, 107 viral-related targets with 189 available 3D crystal or cryo-EM structures and 2698 chemical agents reported for these target proteins. Moreover, Virus-CKB is implemented with web applications for the prediction of the relevant protein targets and analysis and visualization of the outputs, including HTDocking, TargetHunter, BBB predictor, NGL Viewer, Spider Plot, etc. The Virus-CKB server is accessible at https://www.cbligand.org/g/virus-ckb.


Subject(s)
COVID-19/pathology , Computational Biology , Antiviral Agents/pharmacology , COVID-19/virology , Drug Repositioning , Humans , Molecular Docking Simulation , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification
4.
Brief Bioinform ; 22(2): 946-962, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33078827

ABSTRACT

Given the scale and rapid spread of the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, or 2019-nCoV), there is an urgent need to identify therapeutics that are effective against COVID-19 before vaccines are available. Since the current rate of SARS-CoV-2 knowledge acquisition via traditional research methods is not sufficient to match the rapid spread of the virus, novel strategies of drug discovery for SARS-CoV-2 infection are required. Structure-based virtual screening for example relies primarily on docking scores and does not take the importance of key residues into consideration, which may lead to a significantly higher incidence rate of false-positive results. Our novel in silico approach, which overcomes these limitations, can be utilized to quickly evaluate FDA-approved drugs for repurposing and combination, as well as designing new chemical agents with therapeutic potential for COVID-19. As a result, anti-HIV or antiviral drugs (lopinavir, tenofovir disoproxil, fosamprenavir and ganciclovir), antiflu drugs (peramivir and zanamivir) and an anti-HCV drug (sofosbuvir) are predicted to bind to 3CLPro in SARS-CoV-2 with therapeutic potential for COVID-19 infection by our new protocol. In addition, we also propose three antidiabetic drugs (acarbose, glyburide and tolazamide) for the potential treatment of COVID-19. Finally, we apply our new virus chemogenomics knowledgebase platform with the integrated machine-learning computing algorithms to identify the potential drug combinations (e.g. remdesivir+chloroquine), which are congruent with ongoing clinical trials. In addition, another 10 compounds from CAS COVID-19 antiviral candidate compounds dataset are also suggested by Molecular Complex Characterizing System with potential treatment for COVID-19. Our work provides a novel strategy for the repurposing and combinations of drugs in the market and for prediction of chemical candidates with anti-COVID-19 potential.


Subject(s)
Antiviral Agents/pharmacology , SARS-CoV-2/drug effects , Drug Discovery , Drug Repositioning/methods , Molecular Docking Simulation
5.
J Chem Inf Model ; 60(10): 4429-4435, 2020 10 26.
Article in English | MEDLINE | ID: mdl-32786694

ABSTRACT

A traditional single-target analgesic, though it may be highly selective and potent, may not be sufficient to mitigate pain. An alternative strategy for alleviation of pain is to seek simultaneous modulation at multiple nodes in the network of pain-signaling pathways through a multitarget analgesic or drug combinations. Here we present a comprehensive pain-domain-specific chemogenomics knowledgebase (Pain-CKB) with integrated computing tools for target identification and systems pharmacology research. Pain-CKB is constructed on the basis of our established chemogenomics technology with new features, including multiple compound support, multicavity protein support, and customizable symbol display. The determination of bioactivity is also revised to avoid the use of complex machine learning models. Our one-stop computing platform describes the chemical molecules, genes, and proteins involved in pain regulation. To date, Pain-CKB has archived 272 analgesics in the market, 84 pain-related targets with 207 available 3D crystal or cryo-EM structures, and 234 662 chemical agents reported for these target proteins. Moreover, Pain-CKB implements user-friendly web-interfaced computing tools and applications for the prediction and analysis of the relevant protein targets and visualization of the outputs, including HTDocking, TargetHunter, BBB permeation predictor, NGL viewer, Spider Plot, etc. The Pain-CKB server is accessible at https://www.cbligand.org/g/pain-ckb.


Subject(s)
Knowledge Bases , Proteins , Humans , Pain/drug therapy
6.
J Chem Inf Model ; 59(4): 1283-1289, 2019 04 22.
Article in English | MEDLINE | ID: mdl-30835466

ABSTRACT

Drug abuse (DA) or drug addiction is a complicated brain disorder which is commonly considered as neurobiological impairments caused by both genetic factors and environmental effects. Among DA-related targets, G protein-coupled receptors (GPCRs) play an important role in DA therapy. However, only 52 GPCRs have been published with crystal structures in the recent two decades. In the effort to overcome the limitations of crystal structure and conformational diversity of GPCRs, we built homology models and performed conformational searches by molecular dynamics (MD) simulation. To accelerate and facilitate the drug abuse research, we construct a DA-related GPCR-specific chemogenomics knowledgebase (KB) (DAKB-GPCRs) for its research that can be implemented with our established and novel chemogenomics tools as well as algorithms for data analysis and visualization. Our established TargetHunter and HTDocking tools, as well as our novel tools that include target classification and Spider Plot, are compiled into the platform. Our DAKB-GPCRs provides the following results for a query compound: (1) blood-brain barrier (BBB) plot via our BBB predictor, (2) docking scores via HTDocking, (3) similarity score via TargetHunter, (4) target classification via machine learning methods that utilize both docking scores and similarity scores, and (5) a drug-target interaction network via Spider Plot.


Subject(s)
Computational Biology/methods , Receptors, G-Protein-Coupled/metabolism , Substance-Related Disorders/drug therapy , Substance-Related Disorders/metabolism , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Knowledge Bases , Molecular Docking Simulation , Molecular Targeted Therapy , Protein Conformation , Receptors, G-Protein-Coupled/chemistry
7.
Acta Pharmacol Sin ; 40(9): 1138-1156, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30814658

ABSTRACT

Serotonin (5-HT) receptors are proteins involved in various neurological and biological processes, such as aggression, anxiety, appetite, cognition, learning, memory, mood, sleep, and thermoregulation. They are commonly associated with drug abuse and addiction due to their importance as targets for various pharmaceutical and recreational drugs. However, due to a high sequence similarity/identity among 5-HT receptors and the unavailability of the 3D structure of the different 5-HT receptor, no report was available so far regarding the systematical comparison of the key and selective residues involved in the binding pocket, making it difficult to design subtype-selective serotonergic drugs. In this work, we first built and validated three-dimensional models for all 5-HT receptors based on the existing crystal structures of 5-HT1B, 5-HT2B, and 5-HT2C. Then, we performed molecular docking studies between 5-HT receptors agonists/inhibitors and our 3D models. The results from docking were consistent with the known binding affinities of each model. Sequentially, we compared the binding pose and selective residues among 5-HT receptors. Our results showed that the affinity variation could be potentially attributed to the selective residues located in the binding pockets. Moreover, we performed MD simulations for 12 5-HT receptors complexed with ligands; the results were consistent with our docking results and the reported data. Finally, we carried out off-target prediction and blood-brain barrier (BBB) prediction for Captagon using our established hallucinogen-related chemogenomics knowledgebase and in-house computational tools, with the hope to provide more information regarding the use of Captagon. We showed that 5-HT2C, 5-HT5A, and 5-HT7 were the most promising targets for Captagon before metabolism. Overall, our findings can provide insights into future drug discovery and design of medications with high specificity to the individual 5-HT receptor to decrease the risk of addiction and prevent drug abuse.


Subject(s)
Receptors, Serotonin/metabolism , Serotonin Antagonists/metabolism , Serotonin Receptor Agonists/metabolism , Binding Sites , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Pharmacology/methods , Receptors, Serotonin/chemistry , Serotonin Antagonists/chemistry , Serotonin Receptor Agonists/chemistry
8.
PLoS Genet ; 8(3): e1002602, 2012.
Article in English | MEDLINE | ID: mdl-22479198

ABSTRACT

The calpains are physiologically important Ca(2+)-activated regulatory proteases, which are divided into typical or atypical sub-families based on constituent domains. Both sub-families are present in mammals, but our understanding of calpain function is based primarily on typical sub-family members. Here, we take advantage of the model organism Caenorhabditis elegans, which expresses only atypical calpains, to extend our knowledge of the phylogenetic evolution and function of calpains. We provide evidence that a typical human calpain protein with a penta EF hand, detected using custom profile hidden Markov models, is conserved in ancient metazoans and a divergent clade. These analyses also provide evidence for the lineage-specific loss of typical calpain genes in C. elegans and Ciona, and they reveal that many calpain-like genes lack an intact catalytic triad. Given the association between the dysregulation of typical calpains and human degenerative pathologies, we explored the phenotypes, expression profiles, and consequences of inappropriate reduction or activation of C. elegans atypical calpains. These studies show that the atypical calpain gene, clp-1, contributes to muscle degeneration and reveal that clp-1 activity is sensitive to genetic manipulation of [Ca(2+)](i). We show that CLP-1 localizes to sarcomeric sub-structures, but is excluded from dense bodies (Z-disks). We find that the muscle degeneration observed in a C. elegans model of dystrophin-based muscular dystrophy can be suppressed by clp-1 inactivation and that nemadipine-A inhibition of the EGL-19 calcium channel reveals that Ca(2+) dysfunction underlies the C. elegans MyoD model of myopathy. Taken together, our analyses highlight the roles of calcium dysregulation and CLP-1 in muscle myopathies and suggest that the atypical calpains could retain conserved roles in myofilament turnover.


Subject(s)
Caenorhabditis elegans/genetics , Calcium , Muscle, Skeletal , Muscular Dystrophies , Nuclear Proteins , Phosphotransferases , Transcription Factors , Animals , Animals, Genetically Modified , Calcium/metabolism , Calpain/genetics , Calpain/metabolism , Disease Models, Animal , Dystrophin-Associated Protein Complex/genetics , Dystrophin-Associated Protein Complex/metabolism , EF Hand Motifs/genetics , Evolution, Molecular , Gene Expression Regulation , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophies/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Paralysis/genetics , Paralysis/metabolism , Phosphotransferases/genetics , Phosphotransferases/metabolism , Phylogeny , Sequence Homology, Amino Acid , Transcription Factors/genetics , Transcription Factors/metabolism
9.
ACS Omega ; 7(42): 37476-37484, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36312370

ABSTRACT

Transmissible and infectious viruses can cause large-scale epidemics around the world. This is because the virus can constantly mutate and produce different variants and subvariants to counter existing treatments. Therefore, a variety of treatments are urgently needed to keep up with the mutation of the viruses. To facilitate the research of such treatment, we updated our Virus-CKB 1.0 to Virus-CKB 2.0, which contains 10 kinds of viruses, including enterovirus, dengue virus, hepatitis C virus, Zika virus, herpes simplex virus, Andes orthohantavirus, human immunodeficiency virus, Ebola virus, Lassa virus, influenza virus, coronavirus, and norovirus. To date, Virus-CKB 2.0 archived at least 65 antiviral drugs (such as remdesivir, telaprevir, acyclovir, boceprevir, and nelfinavir) in the market, 178 viral-related targets with 292 available 3D crystal or cryo-EM structures, and 3766 chemical agents reported for these target proteins. Virus-CKB 2.0 is integrated with established tools for target prediction and result visualization; these include HTDocking, TargetHunter, blood-brain barrier (BBB) predictor, Spider Plot, etc. The Virus-CKB 2.0 server is accessible at https://www.cbligand.org/g/virus-ckb. By using the established chemogenomic tools and algorithms and newly developed tools, we can screen FDA-approved drugs and chemical compounds that may bind to these proteins involved in viral-associated disease regulation. If the virus strain mutates and the vaccine loses its effect, we can still screen drugs that can be used to treat the mutated virus in a fleeting time. In some cases, we can even repurpose FDA-approved drugs through Virus-CKB 2.0.

10.
ACS Chem Neurosci ; 13(7): 959-977, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35298129

ABSTRACT

Allosteric modulators (AMs) that bind allosteric sites can exhibit greater selectivity than the orthosteric ligands and can either enhance agonist-induced receptor activity (termed positive allosteric modulator or PAM), inhibit agonist-induced activity (negative AM or NAM), or have no effect on activity (silent AM or SAM). Until now, it is not clear what the exact effects of AMs are on the orthosteric active site or the allosteric binding pocket(s). In the present work, we collected both the three-dimensional (3D) structures of receptor-orthosteric ligand and receptor-orthosteric ligand-AM complexes of a specific target protein. Using our novel algorithm toolset, molecular complex characterizing system (MCCS), we were able to quantify the key residues in both the orthosteric and allosteric binding sites along with potential changes of the binding pockets. After analyzing 21 pairs of 3D crystal or cryo-electron microscopy (cryo-EM) complexes, including 4 pairs of GPCRs, 5 pairs of ion channels, 11 pairs of enzymes, and 1 pair of transcription factors, we found that the binding of AMs had little impact on both the orthosteric and allosteric binding pockets. In return, given the accurately predicted allosteric binding pocket(s) of a drug target of medicinal interest, we can confidently conduct the virtual screening or lead optimization without concern that the huge conformational change of the pocket could lead to the low accuracy of virtual screening.


Subject(s)
Allosteric Regulation , Allosteric Site , Binding Sites , Cryoelectron Microscopy , Ligands
11.
ACS Chem Neurosci ; 12(9): 1606-1620, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33856784

ABSTRACT

Characterizing the structural basis of ligand recognition of adenosine A2A receptor (AA2AR) will facilitate its rational design and development of small molecules with high affinity and selectivity, as well as optimal therapeutic effects for pain, cancers, drug abuse disorders, etc. In the present work, we applied our reported algorithm, molecular complex characterizing system (MCCS), to characterize the binding features of AA2AR based on its reported 3D structures of protein-ligand complexes. First, we compared the binding score to the reported experimental binding affinities of each compound. Then, we calculated an output example of residue energy contribution using MCCS and compared the results with data obtained from MM/GBSA. The consistency in results indicated that MCCS is a powerful, fast, and accurate method. Sequentially, using a receptor-ligand data set of 57 crystallized structures of AA2ARs, we characterized the binding features of the binding pockets in AA2AR, summarized the key residues that distinguish antagonist from agonist, produced heatmaps of residue energy contribution for clustering various statuses of AA2ARs, explored the selectivity between AA2AR and AA1AR, etc. All the information provided new insights into the protein features of AA2AR and will facilitate its rational drug design.


Subject(s)
Adenosine A2 Receptor Antagonists , Receptor, Adenosine A2A , Adenosine , Adenosine A2 Receptor Agonists/pharmacology , Adenosine A2 Receptor Antagonists/pharmacology , Ligands , Protein Binding , Receptor, Adenosine A2A/metabolism
12.
ACS Chem Neurosci ; 11(20): 3333-3345, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32941011

ABSTRACT

Increasing attention has been devoted to allosteric modulators as the preferred therapeutic agents for their colossal advantages such as higher selectivity, fewer side effects, and lower toxicity since they bind at allosteric sites that are topographically distinct from the classic orthosteric sites. However, the allosteric binding pockets are not conserved and there are no cogent methods to comprehensively characterize the features of allosteric sites with the binding of modulators. To overcome this limitation, our lab has developed a novel algorithm that can quantitatively characterize the receptor-ligand binding feature named Molecular Complex Characterizing System (MCCS). To illustrate the methodology and application of MCCS, we take G protein coupled receptors (GPCRs) as an example. First, we summarized and analyzed the reported allosteric binding pockets of class A GPCRs using MCCS. Sequentially, a systematic study was conducted between cannabinoid receptor type 1 (CB1) and its allosteric modulators, where we used MCCS to analyze the residue energy contribution and the interaction pattern. Finally, we validated the predicted allosteric binding site in CB2 via MCCS in combination with molecular dynamics (MD) simulation. Our results demonstrate that the MCCS program is advantageous in recapitulating the allosteric regulation pattern of class A GPCRs of the reported pockets as well as in predicting potential allosteric binding pockets. This MCCS program can serve as a valuable tool for the discovery of small-molecule allosteric modulators for class A GPCRs.


Subject(s)
Molecular Dynamics Simulation , Receptors, G-Protein-Coupled , Allosteric Regulation , Allosteric Site , Binding Sites , Ligands , Protein Binding , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
13.
ACS Chem Neurosci ; 11(20): 3245-3258, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32966035

ABSTRACT

More than 50 million adults in America suffer from chronic pain. Opioids are commonly prescribed for their effectiveness in relieving many types of pain. However, excessive prescribing of opioids can lead to abuse, addiction, and death. Non-steroidal anti-inflammatory drugs (NSAIDs), another major class of analgesic, also have many problematic side effects including headache, dizziness, vomiting, diarrhea, nausea, constipation, reduced appetite, and drowsiness. There is an urgent need for the understanding of molecular mechanisms that underlie drug abuse and addiction to aid in the design of new preventive or therapeutic agents for pain management. To facilitate pain related small-molecule signaling pathway studies and the prediction of potential therapeutic target(s) for the treatment of pain, we have constructed a comprehensive platform of a pain domain-specific chemogenomics knowledgebase (Pain-CKB) with integrated data mining computing tools. Our new computing platform describes the chemical molecules, genes, proteins, and signaling pathways involved in pain regulation. Pain-CKB is implemented with a friendly user interface for the prediction of the relevant protein targets and analysis and visualization of the outputs, including HTDocking, TargetHunter, BBB predictor, and Spider Plot. Combining these with other novel tools, we performed three case studies to systematically demonstrate how further studies can be conducted based on the data generated from Pain-CKB and its algorithms and tools. First, systems pharmacology target mapping was carried out for four FDA approved analgesics in order to identify the known target and predict off-target interactions. Subsequently, the target mapping outcomes were applied to build physiologically based pharmacokinetic (PBPK) models for acetaminophen and fentanyl to explore the drug-drug interaction (DDI) between this pair of drugs. Finally, pharmaco-analytics was conducted to explore the detailed interaction pattern of acetaminophen reactive metabolite and its hepatotoxicity target, thioredoxin reductase.


Subject(s)
Analgesics, Opioid , Pharmaceutical Preparations , Drug Interactions , Fentanyl , Knowledge Bases
14.
ACS Omega ; 5(5): 2428-2439, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32064403

ABSTRACT

Epilepsy is a common cause of serious cognitive disorders and is known to have impact on patients' memory and executive functions. Therefore, the development of antiepileptic drugs for the improvement of spatial learning and memory in patients with epileptic cognitive dysfunction is important. In the present work, we systematically predicted and analyzed the potential effects of Ginkgo terpene trilactones (GTTL) on cognition and pathologic changes utilizing in silico and in vivo approaches. Based on our established chemogenomics knowledgebase, we first conducted the network systems pharmacology analysis to predict that ginkgolide A/B/C may target 5-HT 1A, 5-HT 1B, and 5-HT 2B. The detailed interactions were then further validated by molecular docking and molecular dynamics (MD) simulations. In addition, status epilepticus (SE) was induced by lithium-pilocarpine injection in adult Wistar male rats, and the results of enzyme-linked immunosorbent assay (ELISA) demonstrated that administration with GTTL can increase the expression of brain-derived neurotrophic factor (BDNF) when compared to the model group. Interestingly, recent studies suggest that the occurrence of a reciprocal involvement of 5-HT receptor activation along with the hippocampal BDNF-increased expression can significantly ameliorate neurologic changes and reverse behavioral deficits in status epilepticus rats while improving cognitive function and alleviating neuronal injury. Therefore, we evaluated the effects of GTTL (bilobalide, ginkgolide A, ginkgolide B, and ginkgolide C) on synergistic antiepileptic effect. Our experimental data showed that the spatial learning and memory abilities (e.g., electroencephalography analysis and Morris water maze test for behavioral assessment) of rats administrated with GTTL were significantly improved under the middle dose (80 mg/kg, GTTL) and high dose (160 mg/kg, GTTL). Moreover, the number of neurons in the hippocampus of the GTTL group increased when compared to the model group. Our studies showed that GTTL not only protected rat cerebral hippocampal neurons against epilepsy but also improved the learning and memory ability. Therefore, GTTL may be a potential drug candidate for the prevention and/or treatment of epilepsy.

15.
ACS Chem Neurosci ; 10(8): 3486-3499, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31257858

ABSTRACT

The United States of America is fighting against one of its worst-ever drug crises. Over 900 people a week die from opioid- or heroin-related overdoses, while millions more suffer from opioid prescription addiction. Recently, drug overdoses caused by fentanyl-laced cocaine specifically are on the rise. Due to drug synergy and an increase in side effects, polydrug addiction can cause more risk than addiction to a single drug. In the present work, we systematically analyzed the overdose and addiction mechanism of cocaine and fentanyl. First, we applied our established chemogenomics knowledgebase and machine-learning-based methods to map out the potential and known proteins, transporters, and metabolic enzymes and the potential therapeutic target(s) for cocaine and fentanyl. Sequentially, we looked into the detail of (1) the addiction to cocaine and fentanyl by binding to the dopamine transporter and the µ opioid receptor (DAT and µOR, respectively), (2) the potential drug-drug interaction of cocaine and fentanyl via p-glycoprotein (P-gp) efflux, (3) the metabolism of cocaine and fentanyl in CYP3A4, and (4) the physiologically based pharmacokinetic (PBPK) model for two drugs and their drug-drug interaction at the absorption, distribution, metabolism, and excretion (ADME) level. Finally, we looked into the detail of JWH133, an agonist of cannabinoid 2-receptor (CB2) with potential as a therapy for cocaine and fentanyl overdose. All these results provide a better understanding of fentanyl and cocaine polydrug addiction and future drug abuse prevention.


Subject(s)
Cocaine , Drug Overdose , Fentanyl , Machine Learning , Opioid-Related Disorders , Analgesics, Opioid , Cocaine/adverse effects , Cocaine/metabolism , Cocaine/pharmacology , Cocaine-Related Disorders/metabolism , Computer Simulation , Drug Overdose/metabolism , Fentanyl/adverse effects , Fentanyl/metabolism , Fentanyl/pharmacology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL