Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Mol Biol Evol ; 39(9)2022 09 01.
Article in English | MEDLINE | ID: mdl-35946347

ABSTRACT

Biological nitrogen fixation (BNF) by cyanobacteria is of significant importance for the Earth's biogeochemical nitrogen cycle but is restricted to a few genera that do not form monophyletic group. To explore the evolutionary trajectory of BNF and investigate the driving forces of its evolution, we analyze 650 cyanobacterial genomes and compile the database of diazotrophic cyanobacteria based on the presence of nitrogen fixation gene clusters (NFGCs). We report that 266 of 650 examined genomes are NFGC-carrying members, and these potentially diazotrophic cyanobacteria are unevenly distributed across the phylogeny of Cyanobacteria, that multiple independent losses shaped the scattered distribution. Among the diazotrophic cyanobacteria, two types of NFGC exist, with one being ancestral and abundant, which have descended from diazotrophic ancestors, and the other being anaerobe-like and sparse, possibly being acquired from anaerobic microbes through horizontal gene transfer. Interestingly, we illustrate that the origin of BNF in Cyanobacteria coincide with two major evolutionary events. One is the origin of multicellularity of cyanobacteria, and the other is concurrent genetic innovations with massive gene gains and expansions, implicating their key roles in triggering the evolutionary transition from nondiazotrophic to diazotrophic cyanobacteria. Additionally, we reveal that genes involved in accelerating respiratory electron transport (coxABC), anoxygenic photosynthetic electron transport (sqr), as well as anaerobic metabolisms (pfor, hemN, nrdG, adhE) are enriched in diazotrophic cyanobacteria, representing adaptive genetic signatures that underpin the diazotrophic lifestyle. Collectively, our study suggests that multicellularity, together with concurrent genetic adaptations contribute to the evolution of diazotrophic cyanobacteria.


Subject(s)
Cyanobacteria , Nitrogen Fixation , Cyanobacteria/genetics , Gene Transfer, Horizontal , Nitrogen/metabolism , Nitrogen Fixation/genetics , Photosynthesis/genetics , Phylogeny
2.
Syst Biol ; 65(1): 66-81, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26385618

ABSTRACT

Deep phylogenetic relationships of the largest salamander family Plethodontidae have been difficult to resolve, probably reflecting a rapid diversification early in their evolutionary history. Here, data from 50 independent nuclear markers (total 48,582 bp) are used to reconstruct the phylogeny and divergence times for plethodontid salamanders, using both concatenation and coalescence-based species tree analyses. Our results robustly resolve the position of the enigmatic eastern North American four-toed salamander (Hemidactylium) as the sister taxon of Batrachoseps + Tribe Bolitoglossini, thus settling a long-standing question. Furthermore, we statistically reject sister taxon status of Karsenia and Hydromantes, the only plethodontids to occur outside the Americas, leading us to new biogeographic hypotheses. Contrary to previous long-standing arguments that plethodontid salamanders are an old lineage originating in the Cretaceous (more than 90 Ma), our analyses lead to the hypothesis that these salamanders are much younger, arising close to the K-T boundary (~66 Ma). These time estimates are highly stable using alternative calibration schemes and dating methods. Our data simulation highlights the potential risk of making strong arguments about phylogenetic timing based on inferences from a handful of nuclear genes, a common practice. Based on the newly obtained timetree and ancestral area reconstruction results, we argue that (i) the classic "Out of Appalachia" hypothesis of plethodontid origins is problematic; (ii) the common ancestor of extant plethodontids may have originated in northwestern North America in the early Paleocene; (iii) origins of Eurasian plethodontids likely result from two separate dispersal events from western North America via Beringia in the late Eocene (~42 Ma) and the early Miocene (~23 Ma), respectively.


Subject(s)
Phylogeny , Urodela/classification , Urodela/genetics , Animal Distribution , Animals , Molecular Sequence Data , North America , Sequence Analysis, DNA , Time
3.
Syst Biol ; 64(6): 1104-20, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26276158

ABSTRACT

Incongruence between different phylogenomic analyses is the main challenge faced by phylogeneticists in the genomic era. To reduce incongruence, phylogenomic studies normally adopt some data filtering approaches, such as reducing missing data or using slowly evolving genes, to improve the signal quality of data. Here, we assembled a phylogenomic data set of 58 jawed vertebrate taxa and 4682 genes to investigate the backbone phylogeny of jawed vertebrates under both concatenation and coalescent-based frameworks. To evaluate the efficiency of extracting phylogenetic signals among different data filtering methods, we chose six highly intractable internodes within the backbone phylogeny of jawed vertebrates as our test questions. We found that our phylogenomic data set exhibits substantial conflicting signal among genes for these questions. Our analyses showed that non-specific data sets that are generated without bias toward specific questions are not sufficient to produce consistent results when there are several difficult nodes within a phylogeny. Moreover, phylogenetic accuracy based on non-specific data is considerably influenced by the size of data and the choice of tree inference methods. To address such incongruences, we selected genes that resolve a given internode but not the entire phylogeny. Notably, not only can this strategy yield correct relationships for the question, but it also reduces inconsistency associated with data sizes and inference methods. Our study highlights the importance of gene selection in phylogenomic analyses, suggesting that simply using a large amount of data cannot guarantee correct results. Constructing question-specific data sets may be more powerful for resolving problematic nodes.


Subject(s)
Classification/methods , Genomics , Phylogeny , Vertebrates/classification , Vertebrates/genetics , Animals , Spine/anatomy & histology , Vertebrates/anatomy & histology
4.
Mol Phylogenet Evol ; 83: 1-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25462999

ABSTRACT

Although several recent studies have investigated the major phylogenetic relationships within Hynobiidae, their evolutionary history remains partially resolved and the phylogenetic positions of some genera, particularly Pachyhynobius and Salamandrella are still disputed. Notably, previous studies relied primarily on mitochondrial DNA data and concatenated analyses; thus, a new investigation based on multiple nuclear genes and species-tree inference is needed. Here, we provide an in-depth phylogenetic analysis, based on 29 nuclear genes comprising 29,232bp of data from a comprehensive taxonomic sampling (24 hynobiids and 7 outgroups), using both concatenated and species-tree methods. Our results robustly resolved most genus-level relationships within Hynobiidae, including the placement of Salamandrella as the sister group to a clade containing Batrachuperus, Liua and Pseudohynobius, and the placement of Pachyhynobius as the sister group to a clade containing all hynobiids excluding Onychodactylus, Paradactylodon and Ranodon. Time estimates based on our data suggest that the major group of living hynobiids (excluding Onychodactylus) originated approximately 40Ma, ∼50% younger than estimates from mtDNA data (62.5Ma) but 10% older than estimates from three nuclear genes (36Ma). Our results highlight the benefits of using a large number of nuclear loci to infer both phylogeny and time for relatively old lineages.


Subject(s)
Biological Evolution , Cell Nucleus/genetics , Phylogeny , Urodela/classification , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Likelihood Functions , Sequence Analysis, DNA , Urodela/genetics
5.
Mol Biol Evol ; 30(10): 2235-48, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23827877

ABSTRACT

Resolving difficult nodes for any part of the vertebrate tree of life often requires analyzing a large number of loci. Developing molecular markers that are workable for the groups of interest is often a bottleneck in phylogenetic research. Here, on the basis of a nested polymerase chain reaction (PCR) strategy, we present a universal toolkit including 102 nuclear protein-coding locus (NPCL) markers for vertebrate phylogenomics. The 102 NPCL markers have a broad range of evolutionary rates, which makes them useful for a wide range of time depths. The new NPCL toolkit has three important advantages compared with all previously developed NPCL sets: 1) the kit is universally applicable across vertebrates, with a PCR success rate of 94.6% in 16 widely divergent tested vertebrate species; 2) more than 90% of PCR reactions produce strong and single bands of the expected sizes that can be directly sequenced; and 3) all cleanup PCR reactions can be sequenced with only two specific universal primers. To test its actual phylogenetic utility, 30 NPCLs from this toolkit were used to address the higher level relationships of living salamanders. Of the 639 target PCR reactions performed on 19 salamanders and several outgroup species, 632 (98.9%) were successful, and 602 (94.1%) were directly sequenced. Concatenation and species-tree analyses on this 30-locus data set produced a fully resolved phylogeny and showed that Cryptobranchoidea (Cryptobranchidae + Hynobiidae) branches first within the salamander tree, followed by Sirenidae. Our experimental tests and our demonstration for a particular case show that our NPCL toolkit is a highly reliable, fast, and cost-effective approach for vertebrate phylogenomic studies and thus has the potential to accelerate the completion of many parts of the vertebrate tree of life.


Subject(s)
Genetic Loci , Genetic Markers , Genomics/methods , Nuclear Proteins/genetics , Phylogeny , Urodela/genetics , Animals , Chromosome Mapping , Chromosomes, Human , Evolution, Molecular , Genome , Genome, Human , Humans , Polymerase Chain Reaction , Urodela/classification , Vertebrates/genetics
6.
Microbiome ; 11(1): 142, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365664

ABSTRACT

BACKGROUND: Phosphonates are the main components in the global phosphorus redox cycle. Little is known about phosphonate metabolism in freshwater ecosystems, although rapid consumption of phosphonates has been observed frequently. Cyanobacteria are often the dominant primary producers in freshwaters; yet, only a few strains of cyanobacteria encode phosphonate-degrading (C-P lyase) gene clusters. The phycosphere is defined as the microenvironment in which extensive phytoplankton and heterotrophic bacteria interactions occur. It has been demonstrated that phytoplankton may recruit phycospheric bacteria based on their own needs. Therefore, the establishment of a phycospheric community rich in phosphonate-degrading-bacteria likely facilitates cyanobacterial proliferation, especially in waters with scarce phosphorus. We characterized the distribution of heterotrophic phosphonate-degrading bacteria in field Microcystis bloom samples and in laboratory cyanobacteria "phycospheres" by qPCR and metagenomic analyses. The role of phosphonate-degrading phycospheric bacteria in cyanobacterial proliferation was determined through coculturing of heterotrophic bacteria with an axenic Microcystis aeruginosa strain and by metatranscriptomic analysis using field Microcystis aggregate samples. RESULTS: Abundant bacteria that carry C-P lyase clusters were identified in plankton samples from freshwater Lakes Dianchi and Taihu during Microcystis bloom periods. Metagenomic analysis of 162 non-axenic laboratory strains of cyanobacteria (consortia cultures containing heterotrophic bacteria) showed that 20% (128/647) of high-quality bins from eighty of these consortia encode intact C-P lyase clusters, with an abundance ranging up to nearly 13%. Phycospheric bacterial phosphonate catabolism genes were expressed continually across bloom seasons, as demonstrated through metatranscriptomic analysis using sixteen field Microcystis aggregate samples. Coculturing experiments revealed that although Microcystis cultures did not catabolize methylphosphonate when axenic, they demonstrated sustained growth when cocultured with phosphonate-utilizing phycospheric bacteria in medium containing methylphosphonate as the sole source of phosphorus. CONCLUSIONS: The recruitment of heterotrophic phosphonate-degrading phycospheric bacteria by cyanobacteria is a hedge against phosphorus scarcity by facilitating phosphonate availability. Cyanobacterial consortia are likely primary contributors to aquatic phosphonate mineralization, thereby facilitating sustained cyanobacterial growth, and even bloom maintenance, in phosphate-deficient waters. Video Abstract.


Subject(s)
Cyanobacteria , Microcystis , Organophosphonates , Microcystis/genetics , Microcystis/metabolism , Ecosystem , Organophosphonates/metabolism , Cyanobacteria/genetics , Phytoplankton , Lakes/microbiology , Phosphorus/metabolism
7.
J Biosci Bioeng ; 133(6): 547-554, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35256270

ABSTRACT

Tibetan kefir grain as the starter of milk fermentation has been applied as functional food with many bioactive characteristics. In this study, the milk whey product (TKG-MW) was obtained through the milk fermentation of Tibetan kefir grain containing the dominant Lactobacillus, Acetobacter, and Bacillus after 3 and 6 days of cultivation. Antioxidant, anti-inflammatory, and melanogenesis inhibition capacities under TKG-MW treatment were analyzed. Results revealed that the antioxidation of TKG-MW at 6 days of fermentation was higher than that at 3 days of fermentation according to the DPPH and ABTS+ radical scavenging analysis. However, the anti-inflammation of TKG-MW was only observed at 6 days of fermentation by using lipopolysaccharide-stimulated RAW 264.7 macrophages. The inhibition of mushroom tyrosinase activity by TKG-MW was demonstrated. The decrease of melanin content was verified using α-melanocyte-stimulating hormone-stimulated B16-F10 cell. The real-time quantitative reverse transcription polymerase chain reaction result indicated that the mRNA levels of Tyr, Trp-1, and Trp-2 of the B16 cell involved in melanin synthesis were down-regulated over a two-fold change by the TKG-MW treatment. Additionally, the protein expressions of Tyr, Trp-1, Trp-2, and Mitf of the B16 cell were reduced with the TKG-MW treatment. Organic acids, such as lactic acid, succinic acid, 3-phenyllactic acid, l-pyroglutamic acid, and malic acid, were identified by liquid chromatography-mass spectrometry in TKG-MW and were found to significantly inhibit tyrosinase activity. To the best of our knowledge, this work is the first to report melanogenesis suppression by TKG-MW. Results suggested that the fermentation product of TKG could be applied as a depigmenting agent in food and cosmetics.


Subject(s)
Kefir , Animals , Antioxidants/metabolism , Fermentation , Kefir/analysis , Melanins/metabolism , Monophenol Monooxygenase/metabolism , Tibet , Whey/chemistry , Whey/metabolism
8.
Bot Stud ; 63(1): 20, 2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35779152

ABSTRACT

BACKGROUND: Medical plants confer various benefits to human health and their bioconversion through microbial fermentation can increase efficacy, reduce toxicity, conserve resources and produce new chemical components. In this study, the cholesterol-lowering monacolin K genes and content produced by Monascus species were identified. The high-yield monacolin K strain further fermented with various medicinal plants. The antioxidant and anti-inflammatory activities, red pigment and monacolin K content, total phenolic content, and metabolites in the fermented products were analyzed. RESULTS: Monacolin K was detected in Monascus pilosus (BCRC 38072), and Monascus ruber (BCRC 31533, 31523, 31534, 31535, and 33323). It responded to the highly homologous mokA and mokE genes encoding polyketide synthase and dehydrogenase. The high-yield monacolin K strain, M. ruber BCRC 31535, was used for fermentation with various medicinal plants. A positive relationship between the antioxidant capacity and total phenol content of the fermented products was observed after 60 days of fermentation, and both declined after 120 days of fermentation. By contrast, red pigment and monacolin K accumulated over time during fermentation, and the highest monacolin K content was observed in the fermentation of Glycyrrhiza uralensis, as confirmed by RT-qPCR. Moreover, Monascus-fermented medicinal plants including Paeonia lactiflora, Alpinia oxyphylla, G. uralensis, and rice were not cytotoxic. Only the product of Monascus-fermented G. uralensis significantly exhibited the anti-inflammatory capacity in a dose-dependent manner in lipopolysaccharide-induced Raw264.7 cells. The metabolites of G. uralensis with and without fermentation (60 days) were compared by LC/MS. 2,3-Dihydroxybenzoic acid, 3,4-dihydroxyphenylglycol, and 3-amino-4-hydroxybenzoate were considered to enhance the antioxidant and anti-inflammatory ability. CONCLUSIONS: Given that highly homologous monacolin K and citrinin genes can be observed in Monascus spp., monacolin K produced by Monascus species without citrinin genes can be detected through the complementary methods of PCR and HPLC. In addition, the optimal fermentation time was important to the acquisition of antioxidants, red pigment and monacolin K. These bioactive substances were significantly affected by medicinal plants over fermentation time. Consequently, Monascus-fermented G. uralensis had a broad spectrum of biological activities.

9.
Water Res ; 217: 118385, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35405550

ABSTRACT

Aquatic ecosystems comprise almost half of total global methane emissions. Recent evidence indicates that a few strains of cyanobacteria, the predominant primary producers in bodies of water, can produce methane under oxic conditions with methylphosphonate serving as substrate. In this work, we have screened the published 2 568 cyanobacterial genomes for genetic elements encoding phosphonate-metabolizing enzymes. We show that phosphonate degradation (phn) gene clusters are widely distributed in filamentous cyanobacteria, including several bloom-forming genera. Algal growth experiments revealed that methylphosphonate is an alternative phosphorous source for four of five tested strains carrying phn clusters, and can sustain cellular metabolic homeostasis of strains under phosphorus stress. Liberation of methane by cyanobacteria in the presence of methylphosphonate occurred mostly during the light period of a 12 h/12 h diurnal cycle and was suppressed in the presence of orthophosphate, features that are consistent with observations in natural aquatic systems under oxic conditions. The results presented here demonstrate a genetic basis for ubiquitous methane emission via cyanobacterial methylphosphonate mineralization, while contributing to the phosphorus redox cycle.


Subject(s)
Cyanobacteria , Organophosphonates , Cyanobacteria/genetics , Cyanobacteria/metabolism , Ecosystem , Methane , Organophosphorus Compounds , Phosphorus/metabolism
10.
ISME J ; 15(1): 211-227, 2021 01.
Article in English | MEDLINE | ID: mdl-32943748

ABSTRACT

Cyanobacteria are photosynthetic prokaryotes that inhabit diverse aquatic and terrestrial environments. However, the evolutionary mechanisms involved in the cyanobacterial habitat adaptation remain poorly understood. Here, based on phylogenetic and comparative genomic analyses of 650 cyanobacterial genomes, we investigated the genetic basis of cyanobacterial habitat adaptation (marine, freshwater, and terrestrial). We show: (1) the expansion of gene families is a common strategy whereby terrestrial cyanobacteria cope with fluctuating environments, whereas the genomes of many marine strains have undergone contraction to adapt to nutrient-poor conditions. (2) Hundreds of genes are strongly associated with specific habitats. Genes that are differentially abundant in genomes of marine, freshwater, and terrestrial cyanobacteria were found to be involved in light sensing and absorption, chemotaxis, nutrient transporters, responses to osmotic stress, etc., indicating the importance of these genes in the survival and adaptation of organisms in specific habitats. (3) A substantial fraction of genes that facilitate the adaptation of Cyanobacteria to specific habitats are contributed by horizontal gene transfer, and such genetic exchanges are more frequent in terrestrial cyanobacteria. Collectively, our results further our understandings of the adaptations of Cyanobacteria to different environments, highlighting the importance of ecological constraints imposed by the environment in shaping the evolution of Cyanobacteria.


Subject(s)
Cyanobacteria , Adaptation, Physiological/genetics , Cyanobacteria/genetics , Ecosystem , Genomics , Humans , Phylogeny
11.
Mar Pollut Bull ; 158: 111349, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32573451

ABSTRACT

Microplastic (MP) pollution is an emerging contaminant in aquatic environments worldwide. Nonetheless, the developmental toxicity of MPs in the early life stages of fish and the mechanisms involved are not yet fully understood. The present study investigated the effects of different concentrations of polystyrene (PS) MPs on the early development of the marine model fish the medaka Oryzias melastigma. Our results showed that waterborne exposure to PS MPs significantly delayed the hatching time, altered the heartbeat and decreased the hatching rate of embryos. Furthermore, the genes involved in cardiac development, encoding for embryo-hatching enzymes, as well as inflammatory responses were significantly upregulated. The transcriptome results showed that mainly the pathways involved in metabolism, immune response, genetic information processing and diseases were significantly enriched. These results demonstrate that PS MPs negatively impact embryogenesis and the immune response of O. melastigma.


Subject(s)
Oryzias , Water Pollutants, Chemical , Animals , Embryonic Development , Microplastics , Plastics
12.
Genome Biol Evol ; 9(8): 1998-2012, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28830116

ABSTRACT

The interordinal relationships of Laurasiatherian mammals are currently one of the most controversial questions in mammalian phylogenetics. Previous studies mainly relied on coding sequences (CDS) and seldom used noncoding sequences. Here, by data mining public genome data, we compiled an intron data set of 3,638 genes (all introns from a protein-coding gene are considered as a gene) (19,055,073 bp) and a CDS data set of 10,259 genes (20,994,285 bp), covering all major lineages of Laurasiatheria (except Pholidota). We found that the intron data contained stronger and more congruent phylogenetic signals than the CDS data. In agreement with this observation, concatenation and species-tree analyses of the intron data set yielded well-resolved and identical phylogenies, whereas the CDS data set produced weakly supported and incongruent results. Further analyses showed that the phylogeny inferred from the intron data is highly robust to data subsampling and change in outgroup, but the CDS data produced unstable results under the same conditions. Interestingly, gene tree statistical results showed that the most frequently observed gene tree topologies for the CDS and intron data are identical, suggesting that the major phylogenetic signal within the CDS data is actually congruent with that within the intron data. Our final result of Laurasiatheria phylogeny is (Eulipotyphla,((Chiroptera, Perissodactyla),(Carnivora, Cetartiodactyla))), favoring a close relationship between Chiroptera and Perissodactyla. Our study 1) provides a well-supported phylogenetic framework for Laurasiatheria, representing a step towards ending the long-standing "hard" polytomy and 2) argues that intron within genome data is a promising data resource for resolving rapid radiation events across the tree of life.


Subject(s)
Eutheria/genetics , Phylogeny , Animals , Chiroptera/genetics , Databases, Genetic , Evolution, Molecular , Introns
13.
Mol Ecol Resour ; 16(1): 91-102, 2016 01.
Article in English | MEDLINE | ID: mdl-25959587

ABSTRACT

In phylogenetics and population genetics, a large number of loci are often needed to accurately resolve species relationships. Normally, loci are enriched by PCR and sequenced by Sanger sequencing, which is expensive when the number of amplicons is large. Next-generation sequencing (NGS) techniques are increasingly used for parallel amplicon sequencing, which reduces sequencing costs tremendously, but has not reduced preparation costs very much. Moreover, for most current NGS methods, amplicons need to be purified and quantified before sequencing and their lengths are also restricted (normally <700 bp). Here, we describe an approach to sequence pooled amplicons of any length using the Illumina platform. Using this method, amplicons are pooled at equal volume rather than at equal concentration, thus eliminating the laborious purification and quantification steps. We then shear the pooled amplicons, repair the ends, add sample identifying linkers and pool multiple samples prior to Illumina library preparation. Data are then assembled using the transcriptome assembly program trinity, which is optimized to deal with templates of highly varying quantities. We demonstrated the utility of our approach by recovering 93.5% of the target amplicons (size up to 1650 bp) in full length for a 16 taxa × 101 loci project, using ~2.0 GB of Illumina HiSeq paired-end 90-bp data. Overall, we validate a rapid, cost-effective and scalable approach to sequence a large number of targeted loci from a large number of samples that is particularly suitable for both phylogenetics and population genetics studies that require a modest scale of data.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Mammals/genetics , Transcriptome , Animals , Mammals/classification , Phylogeny , Polymerase Chain Reaction
14.
Am J Transl Res ; 8(11): 4844-4856, 2016.
Article in English | MEDLINE | ID: mdl-27904685

ABSTRACT

Ixodes scapularis, the black-legged tick, is one of the most common human-disease vectors and transmits Borrelia species, such as B. burgdorferi, as well as Theileria microti, Anaplasma phagocytophilum, etc. As basic helix-loop-helix (bHLH) transcription factors have been recognized for many years as important regulators of various developmental processes, we performed phylogenetic analysis of the black-legged tick genome in order to identify the number and family of bHLH transcription factors. Because bHLH family members have been identified in many organisms, including silkworm and fruit fly, we were able to conduct this survey and identify 58 putative bHLH transcription factors. Phylogenetic analysis revealed that the black-legged tick has 26, 10, 9, 1, 9, and 1 member in groups A, B, C, D, E, and F, respectively, whereas two were orphan genes. This analysis also revealed that unlike silkworm and fruit fly, the black-legged tick has no Mesp, Mlx, or TF4 family members, but has one more MyoRb family member. The present study provides useful background information for future studies of the black-legged tick as a disease vector with the goal of prevention and treatment.

SELECTION OF CITATIONS
SEARCH DETAIL