Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 909
Filter
Add more filters

Publication year range
1.
EMBO J ; 42(19): e113639, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37565504

ABSTRACT

WRKY transcription factors in plants are known to be able to mediate either transcriptional activation or repression, but the mechanism regulating their transcriptional activity is largely unclear. We found that group IId WRKY transcription factors interact with OBERON (OBE) proteins, forming redundant WRKY-OBE complexes in Arabidopsis thaliana. The coiled-coil domain of WRKY transcription factors binds to OBE proteins and is responsible for target gene selection and transcriptional repression. The PHD finger of OBE proteins binds to both histones and WRKY transcription factors. WRKY-OBE complexes repress the transcription of numerous stress-responsive genes and are required for maintaining normal plant growth. Several WRKY and OBE mutants show reduced plant size and increased drought tolerance, accompanied by increased expression of stress-responsive genes. Moreover, expression levels of most of these WRKY and OBE genes are reduced in response to drought stress, revealing a previously uncharacterized regulatory mechanism of the drought stress response. These results suggest that WRKY-OBE complexes repress transcription of stress-responsive genes, and thereby balance plant growth and stress tolerance.


Subject(s)
Arabidopsis , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Histones/genetics , Histones/metabolism , Plant Proteins/metabolism , Stress, Physiological , Gene Expression Regulation, Plant , Plants, Genetically Modified , Phylogeny
2.
PLoS Pathog ; 20(9): e1012553, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39312577

ABSTRACT

N6-methyladenosine (m6A), a vital post-transcriptional regulator, is among the most prevalent RNA modifications in eukaryotes. Nevertheless, the biological functions of m6A in oomycetes remain poorly understood. Here, we showed that the PsMTA1 and PsMTA2 genes are orthologs of human METTL4, while the PsMET16 gene is an ortholog of human METTL16. These genes are implicated in m6A modification and play a critical role in the production of sporangia and oospores, the release of zoospores, and the virulence of Phytophthora sojae. In P. sojae, m6A modifications are predominantly enriched in the coding sequence and the 3' untranslated region. Notably, the PsMTA1 knockout mutant exhibited reduced virulence, attributed to impaired tolerance to host defense-generated ROS stress. Mechanistically, PsMTA1-mediated m6A modification positively regulates the mRNA lifespan of DNA damage response (DDR) genes in reaction to plant ROS stress during infection. Consequently, the mRNA abundance of the DDR gene PsRCC1 was reduced in the single m6A site mutant ΔRCC1/RCC1A2961C, resulting in compromised DNA damage repair and reduced ROS adaptation-associated virulence in P. sojae. Overall, these results indicate that m6A-mediated RNA metabolism is associated with the development and pathogenicity of P. sojae, underscoring the roles of epigenetic markers in the adaptive flexibility of Phytophthora during infection.


Subject(s)
Adenosine , DNA Damage , DNA Repair , Phytophthora , Plant Diseases , Phytophthora/genetics , Phytophthora/pathogenicity , Adenosine/analogs & derivatives , Adenosine/metabolism , Plant Diseases/microbiology , Oxidative Stress , Virulence/genetics , RNA Processing, Post-Transcriptional , RNA Methylation
3.
FASEB J ; 38(7): e23589, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38572594

ABSTRACT

Breast cancer antiestrogen resistance 4 (BCAR4) has been suggested that can modulate cell behavior, resulting in tumorigenesis and chemoresistance. However, the underlying mechanisms of BCAR4 in trastuzumab resistance (TR) is still elusive. Here, we explored the function and the underlying mechanism of BCAR4 involving in TR. We found that BCAR4 is significantly upregulated in trastuzumab-resistant BC cells. Knockdown of BCAR4 could sensitize the BC cells to trastuzumab and suppress epithelial-mesenchymal transition (EMT). Mechanically, BCAR4 promotes yes-associated protein 1 (YAP1) expression by competitively sponging miR-665, to activated TGF-ß signaling. Reciprocally, YAP1 could occupy the BCAR4 promoter to enhance its transcription, suggesting that there exists a positive feedback regulation between YAP1 and BCAR4. Targeting the BCAR4/miR-665/YAP1 axis may provide a novel insight of therapeutic approaches for TR in BC.


Subject(s)
Breast Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Female , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , RNA, Long Noncoding/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , MicroRNAs/metabolism , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic
4.
Methods ; 222: 100-111, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38228196

ABSTRACT

BACKGROUND: Breast cancer (BC), the most common form of malignant cancer affecting women worldwide, was characterized by heterogeneous metabolic disorder and lack of effective biomarkers for diagnosis. The purpose of this study is to search for reliable metabolite biomarkers of BC as well as triple-negative breast cancer (TNBC) using serum metabolomics approach. METHODS: In this study, an untargeted metabolomics technique based on ultra-high performance liquid chromatography combined with mass spectrometry (UHPLC-MS) was utilized to investigate the differences in serum metabolic profile between the BC group (n = 53) and non-BC group (n = 57), as well as between TNBC patients (n = 23) and non-TNBC subjects (n = 30). The multivariate data analysis, determination of the fold change and the Mann-Whitney U test were used to screen out the differential metabolites. Additionally, machine learning methods including receiver operating curve analysis and logistic regression analysis were conducted to establish diagnostic biomarker panels. RESULTS: There were 36 metabolites found to be significantly different between BC and non-BC groups, and 12 metabolites discovered to be significantly different between TNBC and non-TNBC patients. Results also showed that four metabolites, including N-acetyl-D-tryptophan, 2-arachidonoylglycerol, pipecolic acid and oxoglutaric acid, were considered as vital biomarkers for the diagnosis of BC and non-BC with an area under the curve (AUC) of 0.995. Another two-metabolite panel of N-acetyl-D-tryptophan and 2-arachidonoylglycerol was discovered to discriminate TNBC from non-TNBC and produced an AUC of 0.965. CONCLUSION: This study demonstrated that serum metabolomics can be used to identify BC specifically and identified promising serum metabolic markers for TNBC diagnosis.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Female , Triple Negative Breast Neoplasms/diagnosis , Liquid Chromatography-Mass Spectrometry , Chromatography, Liquid/methods , Tandem Mass Spectrometry , Early Detection of Cancer , Metabolomics/methods , Biomarkers , Biomarkers, Tumor
5.
J Mol Cell Cardiol ; 191: 63-75, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718563

ABSTRACT

INTRODUCTION: Thoracic aortic aneurysm (TAA) is a severe vascular disease that threatens human life, characterized by focal dilatation of the entire aortic wall, with a diameter 1.5 times larger than normal. PIEZO1, a mechanosensitive cationic channel, monitors mechanical stimulations in the environment, transduces mechanical signals into electrical signals, and converts them into biological signals to activate intracellular signaling pathways. However, the role of PIEZO1 in TAA is still unclear. METHODS: We analyzed a single-cell database to investigate the expression level of PIEZO1 in TAA. We constructed a conditional knockout mouse model of Piezo1 and used the PIEZO1 agonist Yoda1 to intervene in the TAA model mice established by co-administration of BAPN and ANG-II. Finally, we explored the effect of Yoda1 on TAA in vitro. RESULTS AND DISCUSSION: We observed decreased PIEZO1 expression in TAA at both RNA and protein levels. Single-cell sequencing identified a specific reduction in Piezo1 expression in endothelial cells. Administration of PIEZO1 agonist Yoda1 prevented the formation of TAA. In PIEZO1 endothelial cell conditional knockout mice, Yoda1 inhibited TAA formation by interfering with PIEZO1. In vivo and in vitro experiments demonstrated that the effect of Yoda1 on endothelial cells involved macrophage infiltration, extracellular matrix degradation, and neovascularization. This study highlights the role of PIEZO1 in TAA and its potential as a therapeutic target, providing opportunities for clinical translation.


Subject(s)
Aortic Aneurysm, Thoracic , Disease Models, Animal , Endothelial Cells , Ion Channels , Mice, Knockout , Single-Cell Analysis , Animals , Aortic Aneurysm, Thoracic/metabolism , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/pathology , Ion Channels/metabolism , Ion Channels/genetics , Mice , Endothelial Cells/metabolism , Humans , Male , Pyrazines , Thiadiazoles
6.
Am J Respir Cell Mol Biol ; 71(1): 121-132, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38587806

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease of the airways characterized by impaired lung function induced by cigarette smoke (CS). Reduced DACH1 (dachshund homolog 1) expression has a detrimental role in numerous disorders, but its role in COPD remains understudied. This study aimed to elucidate the role and underlying mechanism of DACH1 in airway inflammation in COPD by measuring DACH1 expression in lung tissues of patients with COPD. Airway epithelium-specific DACH1-knockdown mice and adenoassociated virus-transfected DACH1-overexpressing mice were used to investigate the role of DACH1 and the potential for therapeutic targeting in experimental COPD caused by CS. Furthermore, we discovered a potential mechanism of DACH1 in inflammation induced by CS extract stimulation in vitro. Compared with nonsmokers and smokers without COPD, patients with COPD had reduced DACH1 expression, especially in the airway epithelium. Airway epithelium-specific DACH1 knockdown aggravated airway inflammation and lung function decline caused by CS in mice, whereas DACH1 overexpression protected mice from airway inflammation and lung function decline. DACH1 knockdown and overexpression promoted and inhibited IL-6 and IL-8 secretion, respectively, in 16HBE human bronchial epidermal cells after CS extract stimulation. NRF2 (nuclear factor erythroid 2-related factor 2) was discovered to be a novel downstream target of DACH1, which binds directly to its promoter. By activating NRF2 signaling, DACH1 induction reduced inflammation. DACH1 levels are lower in smokers and nonsmoking patients with COPD than in nonsmokers. DACH1 has protective effects against inflammation induced by CS by activating the NRF2 signaling pathway. Targeting DACH1 is a potentially viable therapeutic approach for COPD treatment.


Subject(s)
Eye Proteins , NF-E2-Related Factor 2 , Pulmonary Disease, Chronic Obstructive , Signal Transduction , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Animals , NF-E2-Related Factor 2/metabolism , Humans , Mice , Male , Eye Proteins/metabolism , Eye Proteins/genetics , Inflammation/metabolism , Inflammation/pathology , Mice, Inbred C57BL , Middle Aged , Female , Lung/metabolism , Lung/pathology , Aged , Transcription Factors/metabolism , Transcription Factors/genetics
7.
Biochem Biophys Res Commun ; 726: 150276, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-38908347

ABSTRACT

Hairy and Krüppel homolog 1 (Kr-h1) are transcriptional repressors that act synergistically to mediate the gene-repressive action of juvenile hormone (JH). However, whether a regulatory relationship exists between Hairy and Kr-h1 remains unclear. In this study, an inhibitory effect of Hairy on Kr-h1 expression was found. Genetic studies in Drosophila have shown that the simultaneous overexpression of Hairy and Kr-h1 can rescue the defective phenotypes caused by the overexpression of a single factor. Reduced expression of Kr-h1 was observed in Hairy-overexpressing flies and cells, whereas the expression levels of Hairy were unaffected in cells with ectopic expression of Kr-h1. The inhibitory effect of Hairy on Kr-h1 expression was found to occur at the transcriptional level, as Hairy bound directly to the B-box within the Kr-h1 promoter via the bHLH motif and recruited the corepressors C-terminal binding protein (CtBP) and Groucho (Gro) through the PLSLV and WRPW motifs, respectively. Our findings revealed a regulatory relationship between two JH response factors, which advances our understanding of the molecular mechanism of JH signaling.


Subject(s)
Drosophila Proteins , Juvenile Hormones , Kruppel-Like Transcription Factors , Signal Transduction , Animals , Juvenile Hormones/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Promoter Regions, Genetic , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Gene Expression Regulation
8.
BMC Plant Biol ; 24(1): 96, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331783

ABSTRACT

Eucalyptus was one of the most cultivated hardwood species worldwide, with rapid growth, good wood properties and a wide range of adaptability. Eucalyptus stem undergoes primary growth (longitudinal growth) followed by secondary growth (radial growth), which produces biomass that is an important source of energy worldwide. In order to better understand the genetic regulation of secondary growth in Eucalyptus grandis, Transcriptome analyses in stem segments along a developmental gradient from the third internode to the eleventh internode of E. grandis that spanned primary to secondary growth were carried out. 5,149 genes that were differentially expressed during stem development were identified. Combining the trend analysis by the Mfuzz method and the module-trait correlation analysis by the Weighted Gene Co-expression Network Analysis method, a total of 70 differentially expressed genes (DEGs) selected from 868 DEGs with high connectivity were found to be closely correlated with secondary growth. Results revealed that the differential expression of these DEGs suggests that they may involve in the primary growth or secondary growth. AP1, YAB2 TFs and EXP genes are highly expressed in the IN3, whereas NAC, MYB TFs are likely to be important for secondary growth. These results will expand our understanding of the complex molecular and cellular events of secondary growth and provide a foundation for future studies on wood formation in Eucalyptus.


Subject(s)
Eucalyptus , Transcriptome , Eucalyptus/genetics , Eucalyptus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Wood/metabolism , Gene Expression Regulation, Plant
9.
Cytogenet Genome Res ; 164(2): 69-77, 2024.
Article in English | MEDLINE | ID: mdl-39068909

ABSTRACT

BACKGROUND: Aurora kinase B (Aurora-B), a member of the chromosomal passenger complex, is involved in correcting kinetochore-microtubule (KT-MT) attachment errors and regulating sister chromatid condensation and cytoplasmic division during mitosis. SUMMARY: However, few reviews have discussed its mechanism in oocyte meiosis and the differences between its role in mitosis and meiosis. Therefore, in this review, we summarize the localization, recruitment, activation, and functions of Aurora-B in mitosis and oocyte meiosis. The accurate regulation of Aurora-B is essential for ensuring accurate chromosomal segregation and correct KT-MT attachments. Aurora-B regulates the stability of KT-MT attachments by competing with cyclin-dependent kinase 1 to control the phosphorylation of the SILK and RVSF motifs on kinetochore scaffold 1 and by competing with protein phosphatase 1 to influence the phosphorylation of NDC80 which is the substrate of Aurora-B. In addition, Aurora-B regulates the spindle assembly checkpoint by promoting the recruitment and activation of mitotic arrest deficient 2. KEY MESSAGES: This review provides a theoretical foundation for elucidating the mechanism of cell division and understanding oocyte chromosomal aneuploidy.


Subject(s)
Aurora Kinase B , Kinetochores , Meiosis , Microtubules , Mitosis , Oocytes , Aurora Kinase B/metabolism , Aurora Kinase B/genetics , Kinetochores/metabolism , Oocytes/metabolism , Oocytes/cytology , Humans , Animals , Microtubules/metabolism , Phosphorylation , Chromosome Segregation , Female , CDC2 Protein Kinase/metabolism , CDC2 Protein Kinase/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Cytoskeletal Proteins
10.
J Transl Med ; 22(1): 885, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354547

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease of unknown etiology. Despite the increasing global incidence and poor prognosis, the exact pathogenic mechanisms remain elusive. Currently, effective therapeutic targets and treatment methods for this disease are still lacking. This study tried to explore the pathogenic mechanisms of IPF. We found elevated expression of SULF1 in lung tissues of IPF patients compared to normal control lung tissues. SULF1 is an enzyme that modifies heparan sulfate chains of heparan sulfate proteoglycans, playing a critical role in biological regulation. However, the effect of SULF1 in pulmonary fibrosis remains incompletely understood. Our study aimed to investigate the impact and mechanisms of SULF1 in fibrosis. METHODS: We collected lung specimens from IPF patients for transcriptome sequencing. Validation of SULF1 expression in IPF patients was performed using Western blotting and RT-qPCR on lung tissues. ELISA experiments were employed to detect SULF1 concentrations in IPF patient plasma and TGF-ß1 levels in cell culture supernatants. We used lentiviral delivery of SULF1 shRNA to knock down SULF1 in HFL1 cells, evaluating its effects on fibroblast secretion, activation, proliferation, migration, and invasion capabilities. Furthermore, we employed Co-Immunoprecipitation (Co-IP) to investigate the regulatory mechanisms involved. RESULTS: Through bioinformatic analysis of IPF transcriptomic sequencing data (HTIPF) and datasets GSE24206, and GSE53845, we identified SULF1 may potentially play a crucial role in IPF. Subsequently, we verified that SULF1 was upregulated in IPF and predominantly increased in fibroblasts. Furthermore, SULF1 expression was induced in HFL1 cells following exposure to TGF-ß1. Knockdown of SULF1 suppressed fibroblast secretion, activation, proliferation, migration, and invasion under both TGF-ß1-driven and non-TGF-ß1-driven conditions. We found that SULF1 catalyzes the release of TGF-ß1 bound to TGFßRIII, thereby activating the TGF-ß1/SMAD pathway to promote fibrosis. Additionally, TGF-ß1 induces SULF1 expression through the TGF-ß1/SMAD pathway, suggesting a potential positive feedback loop between SULF1 and the TGF-ß1/SMAD pathway. CONCLUSIONS: Our findings reveal that SULF1 promotes fibrosis through the TGF-ß1/SMAD pathway in pulmonary fibrosis. Targeting SULF1 may offer a promising therapeutic strategy against IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Signal Transduction , Smad Proteins , Sulfotransferases , Transforming Growth Factor beta1 , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/genetics , Transforming Growth Factor beta1/metabolism , Sulfotransferases/metabolism , Sulfotransferases/genetics , Smad Proteins/metabolism , Lung/pathology , Lung/metabolism , Male , Cell Proliferation , Female , Cell Movement , Fibroblasts/metabolism , Fibroblasts/pathology , Middle Aged , Cell Line
11.
Insect Mol Biol ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39005109

ABSTRACT

Metamorphosis plays an important role in the evolutionary success of insects. Accumulating evidence indicated that microRNAs (miRNAs) are involved in the regulation of processes associated with insect metamorphosis. However, the miRNAs coordinated with juvenile hormone (JH)-regulated metamorphosis remain poorly reported. In the present study, using high-throughput miRNA sequencing combined with Drosophila genetic approaches, we demonstrated that miR-iab-8, which primarily targets homeotic genes to modulate haltere-wing transformation and sterility was up-regulated by JH and involved in JH-mediated metamorphosis. Overexpression of miR-iab-8 in the fat body resulted in delayed development and failure of larval-pupal transition. Furthermore, metabolomic analysis results revealed that overexpression of miR-iab-8 caused severe energy metabolism defects especially the lipid metabolism, resulting in significantly reduced triacylglycerol (TG) content and glycerophospholipids but enhanced accumulation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). In line with this, Nile red staining demonstrated that during the third larval development, the TG content in the miR-iab-8 overexpression larvae was continuously decreased, which is opposite to the control. Additionally, the transcription levels of genes committed to TG synthesis and breakdown were found to be significantly increased and the expression of genes responsible for glycerophospholipids metabolism were also altered. Overall, we proposed that JH induced miR-iab-8 expression to perturb the lipid metabolism homeostasis especially the TG storage in the fat body, which in turn affected larval growth and metamorphosis.

12.
Insect Mol Biol ; 33(2): 124-135, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37916965

ABSTRACT

Differentiation of imaginal epidermal cells of Drosophila melanogaster to form adult cuticles occurs at approximately 40-93 h after puparium formation. Juvenile hormone (JH) given at pupariation results in formation of a second pupal cuticle in the abdomen instead of the adult cuticle. Although the adult cuticle gene Acp65A has been reported to be down-regulated following JH treatment, the regulatory mechanism remains unclear. Here, we found that the JH primary response gene Krüppel homologue 1 (Kr-h1) plays a vital role in the repression of adult cuticle formation through the mediation of JH action. Overexpression of Kr-h1 mimicked-while knocking down of Kr-h1 attenuated-the inhibitory action of JH on the formation of the adult abdominal cuticle. Further, we found that Kr-h1 inhibited the transcription of Acp65A by directly binding to the consensus Kr-h1 binding site (KBS) within the Acp65A promoter region. Moreover, the DNA methyltransferase Dnmt2 was shown to interact with Kr-h1, combined with the KBS to promote the DNA methylation of sequences around the KBS, in turn inhibiting the transcription of Acp65A. This study advances our understanding of the molecular basis of the "status quo" action of JH on the Drosophila adult metamorphosis.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , DNA Methylation , Drosophila Proteins , Drosophila melanogaster , Juvenile Hormones , Animals , Drosophila/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gene Expression Regulation, Developmental , Insect Proteins/metabolism , Juvenile Hormones/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Metamorphosis, Biological/genetics , Promoter Regions, Genetic , DNA (Cytosine-5-)-Methyltransferases/metabolism , Drosophila Proteins/metabolism
13.
Respir Res ; 25(1): 50, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38254098

ABSTRACT

BACKGROUND: Several researches have demonstrated that patients with sarcoidosis accompanied with the abnormality in blood glucose and/or lipids, however, the causal relationship between them remains uncertain. To elucidate the potential association and causality of blood glucose and lipids with sarcoidosis, we conducted a propensity score matching (PSM)-based observational study combined with mendelian randomization (MR) analysis. METHODS: All subjects in this study were retrospectively collected from Tongji Hospital during 2010 and 2023. 1:1 PSM was employed to control the potential confounders as appropriate. Univariable and multivariable logistic regression analyses were performed to estimate the associations of sarcoidosis with fasting glucose, high density lipoprotein cholesterol (HDLC), low density lipoprotein cholesterol (LDLC), total cholesterol (TC), and total triglyceride (TG). The further subtype analysis was also conducted. Afterwards, a bidirectional MR analysis based on public data deeply explored the causality among the 5 candidate traits and sarcoidosis, for which the inverse-variance weighted (IVW) method was utilized as the main inferring approach. RESULTS: In the observational study, a total number of 756 subjects were enrolled, with 162 sarcoidosis patients and 594 non-sarcoidosis participants, while 160 pairs of subjects were matched after PSM. Multivariable logistic regression analysis indicated that HDLC (OR: 0.151; 95% CI: 0.056-0.408; P < 0.001) and TC (OR: 3.942; 95% CI: 2.644-5.877; P < 0.001) were strongly associated with sarcoidosis. Subtype analysis showed that low HDLC was independently correlated to risk of lesions in bronchus and lungs, and mediastinal lymph nodes, while high TC was to cervical lymph nodes. In MR analysis, high fasting glucose, low HDLC, and high TC were identified as the causal factors of sarcoidosis. CONCLUSION: HDLC and TC had the potential to influence the risk of sarcoidosis, which could be regarded as predictors and may provide new diagnostic and therapeutic targets for sarcoidosis.


Subject(s)
Blood Glucose , Sarcoidosis , Humans , Mendelian Randomization Analysis , Retrospective Studies , Glucose , Sarcoidosis/diagnosis , Sarcoidosis/epidemiology , Sarcoidosis/genetics , Lipids
14.
Circ Res ; 131(10): 828-841, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36252121

ABSTRACT

BACKGROUND: Dysregulated BMP (bone morphogenetic protein) or TGF-ß (transforming growth factor beta) signaling pathways are imperative in idiopathic and familial pulmonary arterial hypertension (PAH) as well as experimental pulmonary hypertension (PH) in rodent models. MED1 (mediator complex subunit 1) is a key transcriptional co-activator and KLF4 (Krüppel-like factor 4) is a master transcription factor in endothelium. However, MED1 and KLF4 epigenetic and transcriptional regulations of the BMP/TGF-ß axes in pulmonary endothelium and their dysregulations leading to PAH remain elusive. We investigate the MED1/KLF4 co-regulation of the BMP/TGF-ß axes in endothelium by studying the epigenetic regulation of BMPR2 (BMP receptor type II), ETS-related gene (ERG), and TGFBR2 (TGF-ß receptor 2) and their involvement in the PH. METHODS: High-throughput screening involving data from RNA-seq, MED1 ChIP-seq, H3K27ac ChIP-seq, ATAC-seq, and high-throughput chromosome conformation capture together with in silico computations were used to explore the epigenetic and transcriptional regulation of BMPR2, ERG, and TGFBR2 by MED1 and KLF4. In vitro experiments with cultured pulmonary arterial endothelial cells (ECs) and bulk assays were used to validate results from these in silico analyses. Lung tissue from patients with idiopathic PAH, animals with experimental PH, and mice with endothelial ablation of MED1 (EC-MED1-/-) were used to study the PH-protective effect of MED1. RESULTS: Levels of MED1 were decreased in lung tissue or pulmonary arterial endothelial cells from idiopathic PAH patients and rodent PH models. Mechanistically, MED1 acted synergistically with KLF4 to transactivate BMPR2, ERG, and TGFBR2 via chromatin remodeling and enhancer-promoter interactions. EC-MED1-/- mice showed PH susceptibility. In contrast, MED1 overexpression mitigated the PH phenotype in rodents. CONCLUSIONS: A homeostatic regulation of BMPR2, ERG, and TGFBR2 in ECs by MED1 synergistic with KLF4 is essential for the normal function of the pulmonary endothelium. Dysregulation of MED1 and the resulting impairment of the BMP/TGF-ß signaling is implicated in the disease progression of PAH in humans and PH in rodent models.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Humans , Mice , Animals , Hypertension, Pulmonary/metabolism , Transforming Growth Factor beta/metabolism , Receptor, Transforming Growth Factor-beta Type II/genetics , Endothelial Cells/metabolism , Epigenesis, Genetic , Bone Morphogenetic Protein Receptors, Type II/genetics , Bone Morphogenetic Protein Receptors, Type II/metabolism , Pulmonary Artery/metabolism , Bone Morphogenetic Proteins/genetics , Pulmonary Arterial Hypertension/genetics , Endothelium, Vascular/metabolism , Transcription Factors/metabolism , Mediator Complex Subunit 1/genetics , Mediator Complex Subunit 1/metabolism
15.
Nephrol Dial Transplant ; 39(2): 251-263, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-37458807

ABSTRACT

BACKGROUND: To explore the cut-off values of haemoglobin (Hb) on adverse clinical outcomes in incident peritoneal dialysis (PD) patients based on a national-level database. METHODS: The observational cohort study was from the Peritoneal Dialysis Telemedicine-assisted Platform (PDTAP) dataset. The primary outcomes were all-cause mortality, major adverse cardiovascular events (MACE) and modified MACE (MACE+). The secondary outcomes were the occurrences of hospitalization, first-episode peritonitis and permanent transfer to haemodialysis (HD). RESULTS: A total of 2591 PD patients were enrolled between June 2016 and April 2019 and followed up until December 2020. Baseline and time-averaged Hb <100 g/l were associated with all-cause mortality, MACE, MACE+ and hospitalizations. After multivariable adjustments, only time-averaged Hb <100 g/l significantly predicted a higher risk for all-cause mortality {hazard ratio [HR] 1.83 [95% confidence interval (CI) 1.19-281], P = .006}, MACE [HR 1.99 (95% CI 1.16-3.40), P = .012] and MACE+ [HR 1.77 (95% CI 1.15-2.73), P = .010] in the total cohort. No associations between Hb and hospitalizations, transfer to HD and first-episode peritonitis were observed. Among patients with Hb ≥100 g/l at baseline, younger age, female, use of iron supplementation, lower values of serum albumin and renal Kt/V independently predicted the incidence of Hb <100 g/l during the follow-up. CONCLUSION: This study provided real-world evidence on the cut-off value of Hb for predicting poorer outcomes through a nation-level prospective PD cohort.


Subject(s)
Kidney Failure, Chronic , Peritoneal Dialysis , Peritonitis , Humans , Female , Prospective Studies , Peritoneal Dialysis/adverse effects , Renal Dialysis/adverse effects , Hemoglobins , Kidney Failure, Chronic/epidemiology , Peritonitis/etiology , Retrospective Studies
16.
J Sleep Res ; : e14331, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289841

ABSTRACT

Sleep is a complex biological process regulated by networks of neurons and environmental factors. As one falls asleep, neurotransmitters from sleep-wake regulating neurones work in synergy to control the switching of different sleep states throughout the night. As sleep disorders or underlying neuropathology can manifest as irregular switching, analysing these patterns is crucial in sleep medicine and neuroscience. While hypnograms represent the switching of sleep states well, current analyses of hypnograms often rely on oversimplified temporal descriptive statistics (TDS, e.g., total time spent in a sleep state), which miss the opportunity to study the sleep state switching by overlooking the complex structures of hypnograms. In this paper, we propose analysing sleep hypnograms using a seven-state continuous-time Markov model (CTMM). This proposed model leverages the CTMM to depict the time-varying sleep-state transitions, and probes three types of insomnia by distinguishing three types of wake states. Fitting the proposed model to data from 2056 ageing adults in the Multi-Ethnic Study of Atherosclerosis (MESA) Sleep study, we profiled sleep architectures in this population and identified the various associations between the sleep state transitions and demographic factors and subjective sleep questions. Ageing, sex, and race all show distinctive patterns of sleep state transitions. Furthermore, we also found that the perception of insomnia and restless sleep are significantly associated with critical transitions in the sleep architecture. By incorporating three wake states in a continuous-time Markov model, our proposed method reveals interesting insights into the relationships between objective hypnogram data and subjective sleep quality assessments.

17.
Br J Clin Pharmacol ; 90(10): 2621-2629, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38925586

ABSTRACT

AIMS: The recommended dosage of pegylated recombinant human granulocyte-colony stimulating factor (PEG-rhG-CSF) for Western chemotherapy patients is 6 mg per cycle. However, for Eastern Asians, the optimal dose remains unknown. METHODS: This open-label, randomized, non-inferiority trial (NCT05283616) enrolled Chinese female breast cancer patients receiving adjuvant chemotherapy. Participants were randomized to receive either 3 or 6 mg of PEG-rhG-CSF per cycle, stratified by body weight (BW; ≤60 kg vs. >60 kg). The primary endpoint was timely absolute neutrophil count (ANC) recovery before the second cycle of chemotherapy. RESULTS: A total of 122 patients were randomized and 116 were included for efficacy analyses. The timely ANC recovery rate in the 3 mg arm was 89.8%, compared to 93.0% in the 6 mg arm (one-sided 95% confidence interval [CI] lower limit for difference: -11.7%), meeting the prespecified non-inferiority margin of 15%. The rate was 93.3% with PEG-rhG-CSF 3 mg and 96.6% with 6 mg in patients with BW ≤ 60 kg, and 86.2% and 89.3%, respectively, in those with BW > 60 kg. Although the incidence of severe neutropenia was similar across arms, the occurrence of excessively high ANC and white blood cell counts was higher in the 6 mg arm. No grade ≥3 adverse events related to PEG-rhG-CSF occurred. CONCLUSION: Three milligrams of PEG-rhG-CSF per cycle provided non-inferior neutrophil protection and attenuated neutrophil overshoot compared to 6 mg doses. This low-dose regimen could be a new supportive care option for Chinese breast cancer patients receiving anthracycline-based adjuvant chemotherapy.


Subject(s)
Breast Neoplasms , Granulocyte Colony-Stimulating Factor , Neutropenia , Polyethylene Glycols , Recombinant Proteins , Humans , Female , Breast Neoplasms/drug therapy , Middle Aged , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/adverse effects , Granulocyte Colony-Stimulating Factor/administration & dosage , Granulocyte Colony-Stimulating Factor/therapeutic use , Granulocyte Colony-Stimulating Factor/adverse effects , Adult , Chemotherapy, Adjuvant/methods , Neutropenia/chemically induced , Neutropenia/epidemiology , Recombinant Proteins/administration & dosage , Recombinant Proteins/adverse effects , Recombinant Proteins/therapeutic use , Neutrophils/drug effects , China , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Asian People , Leukocyte Count , Dose-Response Relationship, Drug , East Asian People
18.
J Bone Miner Metab ; 42(3): 361-371, 2024 May.
Article in English | MEDLINE | ID: mdl-38769209

ABSTRACT

INTRODUCTION: This study is to investigate the relation between serum dehydroepiandrosterone (DHEA) and its sulfate (DHEAS) levels and the risk of osteoporosis in patients with T2DM. MATERIALS AND METHODS: This cross-sectional study involved 938 hospitalized patients with T2DM. Linear regression models were used to explore the relationship between DHEA and DHEAS and the BMD at different skeletal sites. Multinominal logistic regression models and the restricted cubic spline (RCS) were used to evaluate the associations of DHEA and DHEAS with the risks of osteopenia and/or osteoporosis. RESULTS: In postmenopausal women with T2DM, after adjustment for confounders including testosterone and estradiol, DHEA showed a significant positive correlation with lumbar spine BMD (P = 0.013). Moreover, DHEAS exhibited significant positive correlations with BMD at three skeletal sites: including femoral neck, total hip, and lumbar spine (all P < 0.05). Low DHEA and DHEAS levels were associated with increased risk of osteopenia and/or osteoporosis (all P < 0.05) and the risk of osteoporosis gradually decreased with increasing DHEAS levels (P overall = 0.018, P-nonlinear = 0.559). However, DHEA and DHEAS levels in men over the age of 50 with T2DM were not associated with any of above outcomes. CONCLUSION: In patients with T2DM, independent of testosterone and estradiol, higher DHEA and DHEAS levels are associated with higher BMD and lower risk of osteopenia/osteoporosis in postmenopausal women but not men over the age of 50.


Subject(s)
Bone Density , Dehydroepiandrosterone , Diabetes Mellitus, Type 2 , Osteoporosis , Humans , Female , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Osteoporosis/blood , Middle Aged , Male , Dehydroepiandrosterone/blood , Aged , Dehydroepiandrosterone Sulfate/blood , Cross-Sectional Studies , Sex Characteristics , Sulfates/blood
19.
Nanotechnology ; 35(43)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39074483

ABSTRACT

Two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted considerable attention due to their outstanding optoelectronic properties and ease of integration, making them ideal candidates for high-performance photodetectors. However, the excessive width of the bandgap in some 2D TMDs presents a challenge for achieving infrared photodetection. One approach to broaden the photoresponse wavelength range of TMDs is through the utilization of two-photon absorption (TPA) process. Unfortunately, the inefficiency of TPA hinders its application in infrared photodetection. In this study, we propose the design of two photodetectors utilizing high TPA coefficient materials, specifically ReSe2and MoS2, to exploit their TPA capability and extend the photoresponse to the near-infrared region at 1550 nm. The ReSe2photodetector demonstrates an unprecedented responsivity of 43µA W-1, surpassing that of current single-material TPA photodetectors. Similarly, the MoS2photodetector achieves a responsivity of 18µA W-1, comparable to state-of-the-art TPA photodetectors. This research establishes the potential of high TPA coefficient 2D TMDs for infrared photodetection.

20.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 241-247, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38650127

ABSTRACT

Oral squamous cell carcinoma (OSCC) is a common malignant tumor. Importin7 (IPO7) is responsible for nucleoplasmic transport of RNAs and proteins, and it has been confirmed to be involved in the development of human cancers. This study aimed to explore the function and mechanism of IPO7 in OSCC. IPO7 expression in tissues and cells was determined by RT-qPCR. Cell proliferative, migratory, and invasive capabilities were detected through transwell assay and colony formation assay. Mice xenograft models were established for evaluating tumor growth. Autophagy was estimated by the LC3 levels in cells through western blot and immunofluorescence (IF). Western blot was utilized to detect the key proteins in PERK/EIF2AK3/ATF4 pathway for assessing the endoplasmic reticulum stress (ERS). The interaction of IPO7 and homeobox A10 (HOXA10) was tested by GST pull-down assay and Co-IP assay. ChIP assay and luciferase reporter assay were utilized to determine the combination of HOXA10 and EIF2AK3. We proved that IPO7 was upregulated in OSCC tissues and cells, and its depletion reduced cell proliferation, migration, invasion and tumor growth. Furthermore, LC3 expression in cells was found to be reduced by IPO7 knockdown. IPO7 promoted OSCC tumor metastasis by activating autophagy. Additionally, we discovered that IPO7 could regulate ERS by activating the PERK/ATF4 pathway. EIF2AK3 upregulation can promote cell autophagy. Furthermore, IPO7 was proven to promote nuclear translocation of HOXA10 in cells. EIF2AK3 promoter can bind to HOXA10. Rescue assay confirmed that HOXA10 upregulation can reverse the effect of IPO7 silencing on OSCC progression. IPO7 can enhance proliferation, migration, invasion, and autophagy by nuclear translocation of HOXA10 and the activation of EIF2AK3/ATF4 pathway in OSCC.


Subject(s)
Autophagy , Carcinoma, Squamous Cell , Cell Movement , Cell Nucleus , Cell Proliferation , Homeobox A10 Proteins , Homeodomain Proteins , Mouth Neoplasms , alpha Karyopherins , eIF-2 Kinase , Humans , Autophagy/genetics , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Animals , Cell Line, Tumor , Cell Proliferation/genetics , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Cell Movement/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Cell Nucleus/metabolism , Mice , Endoplasmic Reticulum Stress/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Signal Transduction , Karyopherins/metabolism , Karyopherins/genetics , Male , Mice, Inbred BALB C , Female , Neoplasm Invasiveness
SELECTION OF CITATIONS
SEARCH DETAIL