Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Exp Eye Res ; 239: 109787, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211683

ABSTRACT

Retinal ganglion cell (RGC) death and axonal loss cause irreversible vision loss upon optic nerve (ON) injury. We have independently demonstrated that mesenchymal stem cells (MSCs) and green tea extract (GTE) promote RGC survival and axonal regeneration in rats with ON injury. Here we aimed to evaluate the combined treatment effect of human bone marrow-derived MSCs (hBM-MSCs) and GTE on RGC survival and axonal regeneration after ON injury. Combined treatment of hBM-MSCs and GTE promoted RGC survival and neurite outgrowth/axonal regeneration in ex vivo retinal explant culture and in rats after ON injury. GTE increased Stat3 activation in the retina after combined treatment, and enhanced brain-derived neurotrophic factor secretion from hBM-MSCs. Treatment of 10 µg/mL GTE would not induce hBM-MSC apoptosis, but inhibited their proliferation, migration, and adipogenic and osteogenic differentiation in vitro with reducing matrix metalloproteinase secretions. In summary, this study revealed that GTE can enhance RGC protective effect of hBM-MSCs, suggesting that stem cell priming could be a prospective strategy enhancing the properties of stem cells for ON injury treatment.


Subject(s)
Mesenchymal Stem Cells , Optic Nerve Injuries , Rats , Humans , Animals , Optic Nerve Injuries/therapy , Optic Nerve Injuries/metabolism , Retinal Ganglion Cells/metabolism , Osteogenesis , Tea/metabolism , Nerve Regeneration/physiology , Cell Survival/physiology , Axons/metabolism
2.
Mol Genet Genomics ; 298(6): 1343-1352, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37516687

ABSTRACT

Glaucoma is a leading cause of irreversible visual impairment and blindness worldwide. Previous genome-wide association studies have identified caveolin-1 (CAV1), ATP-binding cassette A1 (ABCA1), and forkhead box C1 (FOXC1) loci associated with primary open angle glaucoma (POAG), a major subtype of glaucoma. This study aimed to fine map the association pattern of FOXC1 locus with POAG and determine the correlations of FOXC1, ABCA1, and CAV1 variants with ocular and lipidemic parameters in southern Chinese population. In total, 1291 unrelated Han Chinese subjects were recruited, including 301 high-tension glaucoma (HTG), 126 normal-tension glaucoma (NTG), and 864 control subjects. Twelve variants in FOXC1 locus, and two variants in ABCA1 and CAV1 genes, were genotyped by TaqMan assays. Genetic risk score and genotype-phenotype correlation analyses were conducted. In the FOXC1 locus, LOC102723944 rs6596830, rather than previously reported rs2745572, showed significant association with POAG (P = 8.61 × 10-4, odds ratio (OR) = 0.75) and HTG (P = 3.68 × 10-3, OR = 0.75). ABCA1 rs2487032 was also significantly associated with POAG (P = 3.00 × 10-5, OR = 0.70) and HTG (P = 2.08 × 10-4, OR = 0.70). Joint analysis showed that carriers of homozygous non-protective alleles of ABCA1 rs2487032 and LOC102723944 rs6596830 had 2.99-fold higher risk of POAG (P = 1.27 × 10-3) when compared to those carrying homozygous non-risk alleles. Patients with POAG carrying ABCA1 rs2487032 G allele had higher HDL cholesterol, and those with LOC102723944 rs6596830 A allele had lower LDL. This study revealed individual and joint association of ABCA1 and LOC102723944 variants with POAG in southern Chinese population. Subjects carrying non-protective alleles had increased risk to POAG, and corresponding genotypes would affect the lipid profiles.


Subject(s)
ATP Binding Cassette Transporter 1 , Glaucoma, Open-Angle , Low Tension Glaucoma , Humans , ATP Binding Cassette Transporter 1/genetics , Case-Control Studies , East Asian People , Genetic Association Studies , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Glaucoma, Open-Angle/genetics , Low Tension Glaucoma/genetics , Polymorphism, Single Nucleotide
3.
Exp Eye Res ; 237: 109708, 2023 12.
Article in English | MEDLINE | ID: mdl-37913917

ABSTRACT

Experimental autoimmune encephalomyelitis (EAE), induced by the immunization of myelin oligodendrocyte glycoprotein (MOG), is related to human MOG antibody-associated disease (MOGAD). Neuroinflammation and demyelination of the optic nerve can lead to retinal ganglion cell (RGC) death and axonal damage in MOGAD. Here, we aimed to evaluate the structural changes in RGCs longitudinally by in vivo imaging in mice with RGCs expressing yellow fluorescent protein along the course of EAE. Successful induction of EAE was confirmed by the neurological function scores and histology analyses. The changes in the thickness of ganglion cell complex (GCC) layer and RGC survival and dendrites were monitored longitudinally along the course of EAE. Before the onset of EAE, there were no significant changes in the number and morphology of RGCs and the thickness of the GCC layer as compared to the mice without EAE induction. After the onset of EAE, the thickness of the GCC layer and the RGC number and dendritic network all gradually decreased along the course of EAE. Notably, dendritic shrinkage could be detected earlier than the thinning of the GCC layer. In summary, this study delineated the longitudinal profile of RGC structural changes in EAE mice, providing an assessment platform for monitoring outcomes of RGC treatments.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Retinal Ganglion Cells , Humans , Mice , Animals , Retinal Ganglion Cells/pathology , Encephalomyelitis, Autoimmune, Experimental/complications , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Retina/pathology , Optic Nerve/pathology , Dendrites , Mice, Inbred C57BL
4.
Mol Vis ; 25: 35-46, 2019.
Article in English | MEDLINE | ID: mdl-30804660

ABSTRACT

Purpose: Retinitis pigmentosa (RP) belongs to a group of inherited retinal diseases with high genetic heterogeneity. This study aimed at identifying the disease-causing variants in patients with autosomal recessive RP. Methods: Three RP families with autosomal recessive inheritance and 139 sporadic RP patients were included. Complete ophthalmic examinations were conducted in all the study subjects. DNA samples were extracted from patients' peripheral blood for whole exome sequencing (WES) analysis. Direct Sanger sequencing was conducted for validating the identified mutations and cosegregation pattern in the RP families. Results: One novel (c.7492G>C:p.Ala2498Pro and c.8422C>T:p.Ala2808Thr) and one reported (c.8012T>A:p.Leu2671X and 6416G>A:p.Cys2139Tyr) pair of compound heterozygous mutations, as well as one reported compound homozygous mutation (c.6416G>A:p.Cys2139Tyr/c.8012T>A:p.Leu2671X), were identified in the EYS gene from three families with autosomal recessive RP. All the mutations were cosegregated with the RP phenotype in the RP families. For the sporadic RP patients, seven novel and seven reported EYS variants were identified in 19 patients, including two novel frameshift (c.8301dupT:p.Asp2767fs and c.9437_9440del:p.Glu3146fs), three novel missense (c.8297G>C:p.Gly2766Ala, c.9052T>C:p.Trp3018Arg, and c.8907T>G:p.Cys2969Trp), and one nonsense (c.490C>T:p.Arg164X) variants. All the novel mutations were confirmed by Sanger sequencing. Most of the variants were located at the C-terminus of the EYS protein. Bioinformatics analyses indicated that all detected variants were damaging or possibly damaging. Conclusions: This study identified eight novel EYS variants and expanded the spectrum of EYS mutations in Chinese RP patients.


Subject(s)
Exome , Eye Proteins/genetics , Mutation , Retinitis Pigmentosa/genetics , Adult , Amino Acid Substitution , Asian People , Base Sequence , Computational Biology/methods , Female , Gene Expression , Genes, Recessive , Heterozygote , Homozygote , Humans , Male , Middle Aged , Pedigree , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/ethnology , Retinitis Pigmentosa/pathology , Exome Sequencing
5.
Cell Prolif ; : e13719, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39021340

ABSTRACT

Traumatic optic neuropathy refers to optic nerve (ON) injury by trauma, including explosion and traffic accident. Retinal ganglion cell (RGC) death is the critical pathological cause of irreversible visual impairment and blindness in ON injury. We previously investigated the patterns of 11 modes of cell death in mouse retina post-ON injury. Here we aimed to identify additional signalling pathways regulating RGC survival in rodents post-ON injury. RNA sequencing analysis identified the upregulation of inflammation and cellular senescence-related genes in retina post-ON injury, which were confirmed by immunoblotting and immunofluorescence analyses. Increased expression of senescence-associated ß-galactosidase (SA-ßgal) in RGCs and activation of microglia were also found. Transforming growth factor-ß receptor type II inhibitor (LY2109761) treatment suppressed p15Ink4b and p21Cip1 protein and SA-ßgal expression and promoted RGC survival post-ON injury with decreasing the expression of cell death markers in retina. Consistently, senolytics (dasatinib and quercetin) treatments can promote RGC survival and alleviate the reduction of ganglion cell complex thickness and pattern electroretinography activity post-ON injury with reducing SA-ßgal, p15Ink4b, p21Cip1, microglial activation and cell death marker expression. In summary, this study revealed the activation of cellular senescence in rodent retina post-ON injury and contribute to RGC survival regulation. Targeting cellular senescence can promote RGC survival after ON injury, suggesting a potential treatment strategy for traumatic optic neuropathy.

6.
Neural Regen Res ; 19(5): 1112-1118, 2024 May.
Article in English | MEDLINE | ID: mdl-37862216

ABSTRACT

Intraocular pressure elevation can induce retinal ganglion cell death and is a clinically reversible risk factor for glaucoma, the leading cause of irreversible blindness. We previously demonstrated that casein kinase-2 inhibition can promote retinal ganglion cell survival and axonal regeneration in rats after optic nerve injury. To investigate the underlying mechanism, in the current study we increased the intraocular pressure of adult rats to 75 mmHg for 2 hours and then administered a casein kinase-2 inhibitor (4,5,6,7-tetrabromo-2-azabenzimidazole or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole) by intravitreal injection. We found that intravitreal injection of 4,5,6,7-tetrabromo-2-azabenzimidazole or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole promoted retinal ganglion cell survival and reduced the number of infiltrating macrophages. Transcriptomic analysis showed that the mitogen activated protein kinase signaling pathway was involved in the response to intraocular pressure elevation but was not modulated by the casein kinase-2 inhibitors. Furthermore, casein kinase-2 inhibition downregulated the expression of genes (Cck, Htrsa, Nef1, Htrlb, Prph, Chat, Slc18a3, Slc5a7, Scn1b, Crybb2, Tsga10ip, and Vstm21) involved in intraocular pressure elevation. Our data indicate that inhibition of casein kinase-2 can enhance retinal ganglion cell survival in rats after acute intraocular pressure elevation via macrophage inactivation.

7.
Open Life Sci ; 18(1): 20220760, 2023.
Article in English | MEDLINE | ID: mdl-38027227

ABSTRACT

Non-adherent culture is critical for the transdifferentiation of stem cells from mesoderm to neuroectoderm. Sphere culture has been reported to directly induce the adipose tissue cells to neural stem cells. Here we aimed to evaluate continuous non-adherent culture on the transdifferentiation potential of human adipose-derived stem cells (ASCs) into retinal lineage. Human ASCs were induced into retinal lineage by the treatment of noggin, dickkopf-related protein 1, and IGF-1 (NDI) under adherent and non-adherent culture. The NDI induction treatment with the adherent culture for 21 days promoted robust expression of retinal markers in the induced ASCs as compared to those without NDI induction on the adherent culture. With continuous non-adherent culture for 21 days, human ASCs could highly express retinal marker genes even without NDI induction treatment as compared to those on the adherent culture. The combination of continuous non-adherent culture with the NDI induction did not show a significant upregulation of the retinal marker expression as compared to either NDI induction with the adherent culture or continuous non-adherent culture without NDI induction treatment. In summary, both non-adherent culture and NDI induction medium could independently promote the transdifferentiation of human ASCs into retinal lineage. Yet, their combination did not produce an enhancement effect.

8.
Heliyon ; 9(11): e22240, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034647

ABSTRACT

This study aimed to evaluate the association of body mass index (BMI) and the weight-related gene, peroxidasin-like (PXDNL), with acute primary angle closure (APAC) and primary angle-closure glaucoma (PACG) in southern Chinese population. Total 4700 study subjects (1024 APAC, 781 PACG, and 2895 control subjects) with complete ophthalmic examinations were enrolled into this study. The association of BMI with APAC, PACG and ocular biometric parameters was evaluated. Three PXDNL missense variants were genotyped by TaqMan assay, and their association with APAC and PACG was also investigated. Multivariable logistic regression analysis showed that BMI and body weight were significantly associated with both APAC and PACG (P < 0.01). Multiple linear regression analysis demonstrated that each 1 kg/m2 increased in BMI was associated with 0.038 mm increase in axial length, 0.018 mm increase in central anterior chamber depth, 0.002 mm increase in lens position, 0.012 mm increase in corneal diameter and 0.014 mm decrease in lens thickness among the APAC subjects (P < 0.001), but not with PACG. Genetic association analysis identified that PXDNL rs11985241-rs16916207 CT haplotype conferred a higher risk to APAC (OR = 1.25, P = 0.004) than the TG haplotype, but not with PACG. The APAC subjects carrying the rs11985241 C or rs16916207 T alleles showed significantly lower weight than those carrying the corresponding protective alleles. In summary, this study revealed that lower BMI could be associated with higher risk of APAC. PXDNL could be a new associated gene for APAC.

9.
Transl Vis Sci Technol ; 11(8): 1, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35913417

ABSTRACT

Purpose: The purpose of this study was to evaluate the pathological involvement of erythropoietin (EPO) in experimental choroidal neovascularization (CNV) and its association with neovascular age-related macular degeneration (AMD) and polypoidal choroidal vasculopathy (PCV) in the Chinese population. Methods: Treatment effect of recombinant EPO protein were assessed by human umbilical vein endothelial cell (HUVEC) proliferation, migration, and tube formation, and ex vivo choroid-sprouting ability. The effect of intravitreal injection of Epo siRNA against neovascularization was evaluated in the laser-induced CNV mouse model. In addition, the association of EPO variants with neovascular AMD and PCV was determined. Results: Exogenous supplementation of EPO significantly enhanced the migration and tube formation of HUVECs and promoted ex vivo choroid sprouting in mouse retinal pigment epithelium (RPE)-choroid-sclera complex culture. In the experimental CNV mouse model, Epo expression was found to be significantly upregulated by 3.5-folds in RPE-choroid-sclera complex at day 10 after laser induction as compared to the baseline. Immunofluorescence analysis showed that Epo was mainly expressed around the vascular endothelial cells in the RPE-choroid-sclera complex. Intravitreal injection of siRNA targeting Epo reduced 40% Epo expression and 40% CNV lesion areas as compared to the scramble control. However, EPO variants were not associated with neovascular AMD nor PCV in the Chinese population. Conclusions: This study revealed the promotion of human endothelial cell tube formation in vitro and choroid sprouting ex vivo by EPO, and the reduction of laser-induced CNV in vivo by Epo RNA interference. Translational Relevance: Targeting EPO could be a potential additional treatment for CNV-related diseases.


Subject(s)
Choroid Diseases , Choroidal Neovascularization , Erythropoietin , Wet Macular Degeneration , Angiogenesis Inhibitors , Animals , Choroid Diseases/genetics , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/genetics , Erythropoietin/genetics , Erythropoietin/metabolism , Erythropoietin/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Lasers , Mice , RNA Interference , RNA, Small Interfering/genetics , Visual Acuity , Wet Macular Degeneration/genetics
10.
Eye (Lond) ; 36(4): 749-759, 2022 04.
Article in English | MEDLINE | ID: mdl-33846575

ABSTRACT

OBJECTIVES: To delineate the disease-causing mutations of the Stargardt disease-related genes in Chinese patients diagnosed with Stargardt disease or retinitis pigmentosa (RP) by whole exome sequencing analysis. METHODS: A total of 123 sporadic RP or Stargardt disease patients and 2 Stargardt disease families were recruited. All sporadic patients and the probands of the families were subjected to whole exome sequencing analysis. The candidate mutations were verified by direct sequencing based on the cosegregation pattern and in 200 control subjects and by the bioinformatics analyses. RESULTS: A total of three reported ABCA4 mutations were identified in the probands of the two Stargardt disease families. The probands and the affected family members with either homozygous or compound heterozygous mutations showed typical Stargardt disease features, which was absent in their unaffected family members. The cosegregation pattern confirmed the mode of recessive inheritance. Moreover, two sporadic Stargardt disease patients were identified to carry two novel ABCA4 and one PROM1 mutations. In addition, 13 novel variants were found in 119 sporadic RP patients in 7 Stargardt disease-related genes, and 8 novel missense variants were conserved across different species and predicted to be damaging to the protein. All 15 novel variants were absent in our 200 control subjects. CONCLUSIONS: This study revealed 22.4% study subjects carrying Stargardt disease-related gene mutations with total 15 novel variants in seven Stargardt disease-related genes, assuring that targeted next-generation sequencing analysis is a high throughput strategy to facilitate the clinical diagnosis from suspicious patients and recommended as a routine examination for inherited retinal dystrophies.


Subject(s)
Exome , Retinitis Pigmentosa , ATP-Binding Cassette Transporters/genetics , China , DNA Mutational Analysis , Exome/genetics , Humans , Mutation , Pedigree , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/genetics , Stargardt Disease/diagnosis , Stargardt Disease/genetics , Exome Sequencing
11.
Exp Neurol ; 341: 113711, 2021 07.
Article in English | MEDLINE | ID: mdl-33785307

ABSTRACT

BACKGROUND: Previous studies reported that mild inflammation promotes retinal ganglion cell (RGC) survival and axonal regeneration after optic nerve (ON) injury with involvement of infiltrating macrophages and neutrophils. Here we aimed to evaluate the involvement and regulation of the main inflammatory chemokine pathway CXCL5/CXCR2 in the inflammation-mediated RGC survival and axonal regeneration in mice after ON injury. METHODS: The expressions and cellular locations of CXCL5 and CXCR2 were confirmed in mouse retina. Treatment effects of recombinant CXCL5 and CXCR2 antagonist SB225002 were studied in the explant culture and the ON injury model with or without lens injury. The number of RGCs, regenerating axons, and inflammatory cells were determined, and the activation of Akt andSTAT3 signaling pathways were evaluated. RESULTS: Cxcr2 and Cxcl5 expressions were increased after ON and lens injury. Addition of recombinant CXCL5 promoted RGC survival and neurite outgrowth in retinal explant culture with increase in the number of activated microglia, which was inhibited by SB225002 or clodronate liposomes. Recombinant CXCL5 also alleviated RGC death and promoted axonal regeneration in mice after ON injury, and promoted the lens injury-induced RGC protection with increase in the number of activated CD68+ cells. SB225002 inhibited lens injury-induced cell infiltration and activation, and attenuated the promotion effect on RGC survival and axonal regeneration through reduction of lens injury-induced Akt activation. CONCLUSIONS: CXCL5 promotes RGC survival and axonal regeneration after ON injury and further enhances RGC protection induced by lens injury with CD68+ cell activation, which is attenuated by CXCR2 antagonist. CXCL5/CXCR2 could be a potential therapeutic target for RGC survival promotion after ON injury.


Subject(s)
Chemokine CXCL5/biosynthesis , Inflammation Mediators/metabolism , Optic Nerve Injuries/metabolism , Receptors, Interleukin-8B/biosynthesis , Animals , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Inflammation Mediators/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Nerve Regeneration/drug effects , Nerve Regeneration/physiology , Optic Nerve Injuries/pathology , Phenylurea Compounds/pharmacology , Receptors, Interleukin-8B/antagonists & inhibitors
12.
Ophthalmic Genet ; 42(4): 446-457, 2021 08.
Article in English | MEDLINE | ID: mdl-33979260

ABSTRACT

BACKGROUND: Myopia is the most prevalent ocular disorder in the world, and corneal parameters have been regarded as key ocular biometric parameters determining the refractive status. Here, we aimed to determine the association of genome-wide association study-identified corneal curvature (CC)-related gene variants with different severity of myopia and ocular biometric parameters in Chinese population. METHODS: Total 2,101 unrelated Han Chinese subjects were recruited, including 1,649 myopia and 452 control subjects. Five previously reported CC-associated gene variants (PDGFRA, MTOR, WNT7B, CMPK1 and RBP3) were genotyped by TaqMan assay, and their association with different myopia severity and ocular biometric parameters were evaluated. RESULTS: Joint additive effect analysis showed that MTOR rs74225573 paired with PDGFRA rs2114039 (P = .009, odds ratio (OR) = 4.91) or CMPK1 rs17103186 (P = .002, OR = 13.03) were significantly associated with higher risk in mild myopia. Critically, mild myopia subjects had significantly higher frequency in MTOR rs74225573 C allele than high myopia subjects (P = .003), especially in male subjects (P = .001, OR = 0.49). High myopia subjects carrying MTOR rs74225573 C allele have significant flatter CC (P = .035) and longer corneal radius (P = .044) than those carrying TT genotype. CONCLUSION: This study revealed that male high myopia subjects are more prone to carry CC-related MTOR rs74225573 T allele, whereas mild myopia subjects are prone to carry the C allele. MTOR rs7422573 variant could be a genetic marker to differentiate mild from high myopia in risk assessment. ABBREVIATIONS: ACD: anterior chamber depth; AL: axial length; AL/CR: axial length/corneal radius ratio; ANOVA: analysis of variance; CC: corneal curvature; CCT: central corneal thickness; C.I.: confidence interval; CMPK1: cytidine/uridine monophosphate kinase 1; CR: corneal radius; D: diopter; GWAS: genome-wide association studies; HWE: Hardy-Weinberg equilibrium; LT: lens thickness; MIPEP: mitochondrial intermediate peptidase; MTOR: mechanistic target of rapamycin kinase; OR: odds ratio; PDGFRA: platelet-derived growth factor receptor-α; RBP3: retinol-binding protein 3; SD: standard deviation; SE: spherical equivalence; SNTB1: syntrophin beta 1; VCD: vitreous chamber depth; VIPR2: vasoactive intestinal peptide receptor 2; WNT7B: wingless/integrated family member 7B.


Subject(s)
Asian People/genetics , Cornea/pathology , Myopia, Degenerative/diagnosis , Myopia, Degenerative/genetics , TOR Serine-Threonine Kinases/genetics , Adult , Aged , Alleles , Axial Length, Eye , Biometry , China/epidemiology , Eye Proteins/genetics , Female , Genetic Association Studies , Genetic Markers , Genome-Wide Association Study , Genotyping Techniques , Humans , Male , Middle Aged , Myopia/diagnosis , Myopia/genetics , Nucleoside-Phosphate Kinase/genetics , Polymorphism, Single Nucleotide , Receptor, Platelet-Derived Growth Factor alpha/genetics , Refraction, Ocular , Retinol-Binding Proteins/genetics , Wnt Proteins/genetics , Young Adult
13.
Br J Ophthalmol ; 105(6): 869-877, 2021 06.
Article in English | MEDLINE | ID: mdl-31604699

ABSTRACT

BACKGROUND/AIMS: To determine the association and interaction of genome-wide association study-reported variants for Asian populations with myopia and ocular biometric parameters in southern Chinese population. METHODS: Totally, 1462 unrelated Han Chinese subjects were recruited with complete ophthalmic examinations, including 1196 myopia and 266 control subjects. A total of nine variants were selected for TaqMan genotyping. The genetic association, joint additive effect and genotype-phenotype correlation were investigated. RESULTS: The 4q25 variant rs10034228 (p=0.002, OR=0.56) and MIPEP variant rs9318086 (p=0.004, OR=1.62) were found to be significantly associated with myopia as well as different severity of myopia. Moreover, 15q14 variant rs524952 (p=0.015, OR=1.49) also showed mild association with myopia and high myopia. However, there was no significant association of CTNND2, vasoactive intestinal peptide receptor 2 and syntrophin beta 1 variants with myopia. Joint additive analysis revealed that the subjects carrying 6 risk alleles of the 3 associated variants were 10-fold higher risk predisposed to high myopia. Genotype-phenotype correlation analysis revealed that high myopia subjects carrying 4q25 rs10034228 T allele showed thicker central corneal thickness, whereas high myopia subjects carrying 15q14 rs524952 A allele were associated with longer axial length and larger curvature ratio. CONCLUSION: This study revealed significant association of 4q25, 15q14 and MIPEP variants with myopia and different severity of myopia in southern Chinese population, joint additively enhancing 10-fold of risk predisposing to high myopia. The correlation of these associated variants with axial length and corneal parameters suggests their contribution to the refractive status in high myopia subjects.


Subject(s)
DNA/genetics , Eye Proteins/genetics , Genome-Wide Association Study/methods , Metalloendopeptidases/genetics , Myopia/genetics , Polymorphism, Single Nucleotide , Adolescent , Adult , Aged , Aged, 80 and over , Alleles , Biometry , Child , China/epidemiology , Female , Genetic Predisposition to Disease , Genotype , Humans , Incidence , Male , Metalloendopeptidases/metabolism , Middle Aged , Myopia/epidemiology , Myopia/physiopathology , Protein Precursors , Young Adult
14.
Sci Rep ; 9(1): 5628, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30948794

ABSTRACT

Retinitis pigmentosa (RP) is a common phenotype in multiple inherited retinal dystrophies (IRD). Disease gene identification can assist the clinical diagnosis of IRD patients for better clinical management, treatment and counseling. In this study, we aimed to delineate and characterize the disease-causing mutations in Chinese familial and sporadic patients with initial diagnosis of RP. Four unrelated Chinese families and 118 sporadic RP patients were recruited for whole exome sequencing analysis. A total of 5 reported and 3 novel USH2A mutations were identified in four Chinese probands. The probands and their family members showed typical RP features and mild to severe hearing impairment, confirming the diagnosis of Usher syndrome 2 (USH). Moreover, 11 sporadic RP patients were identified to carry the compound heterozygous mutations in the USH2A gene, confirming the diagnosis of USH2. The patients carried the truncating mutations had a younger age of first visit than the patients carried only the missense mutations (p = 0.017). In summary, this study revealed 8 novel USH2A variants in Chinese familial and sporadic RP patients, assuring that whole exome sequencing analysis is an adequate strategy to facilitate the clinical diagnosis of USH from the sporadic RP patients.


Subject(s)
Extracellular Matrix Proteins/genetics , Usher Syndromes/diagnosis , Usher Syndromes/genetics , Adult , Asian People/genetics , China/epidemiology , DNA Mutational Analysis , Extracellular Matrix Proteins/metabolism , Female , Humans , Male , Middle Aged , Mutation/genetics , Pedigree , Phenotype , Retinitis Pigmentosa/genetics , Exome Sequencing/methods
15.
Invest Ophthalmol Vis Sci ; 60(13): 4277-4284, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31618764

ABSTRACT

Purpose: Juvenile-onset open-angle glaucoma (JOAG), if left untreated, will lead to severe visual disability. The purpose of this study was to identify the disease-causing mutations in a Chinese JOAG family. Methods: We recruited a Chinese JOAG family and unrelated primary open-angle glaucoma (POAG) patients (270, Chinese), and performed whole-exome sequencing (WES) to screen the sequence variations. Variants identified by WES were validated by Sanger sequencing. Subsequently, qPCR and Western blotting were used to determine the expression of wild-type (WT) and its mutated-type (MT) of 2'-5'-oligoadenylate synthetase 3 (OAS3) genes. Results: Seventeen heterozygous candidate variants were revealed in the JOAG family based on the screening of WES data. Of those, the heterozygous variant exon11:c.2299C>T: p.Arg767Cys in OAS3, a gene used to synthesize 2'-5'-oligoadenylate (2-5A), co-segregates with the disease phenotype. One unrelated POAG patient also carried this variant, but this variant was absent in 200 nonglaucoma healthy controls. Analysis of the Arg767Cys mutation with PolyPhen2, CADD, and SIFT all suggest that it is pathogenic. This arginine residue is highly conserved in all selected OAS3 orthologs. On the other hand, in peripheral blood samples, the mRNA expression of OAS3 in patients significantly decreased compared with unaffected controls. Moreover, the expression level of recombinant OAS3 protein (mutated Arg767Cys) also observably reduced compared with level of WT protein in HEK293T cells. Conclusions: Our study revealed a heterozygous mutation in OAS3 from a Chinese JOAG family. And this mutation showed a deleterious effect to the expression of OAS3.


Subject(s)
2',5'-Oligoadenylate Synthetase/genetics , Asian People/genetics , Genetic Predisposition to Disease , Glaucoma, Open-Angle/genetics , Mutation , Adult , Blotting, Western , China/epidemiology , Gene Expression Regulation/physiology , Genetic Vectors , Glaucoma, Open-Angle/diagnosis , HEK293 Cells , Heterozygote , Humans , Male , Pedigree , RNA, Messenger/genetics , Vision Disorders/diagnosis , Vision Disorders/genetics , Visual Fields , Exome Sequencing
16.
Oxid Med Cell Longev ; 2018: 5489476, 2018.
Article in English | MEDLINE | ID: mdl-30533172

ABSTRACT

PURPOSE: Oxidative stress is a common pathological condition for multiple retinal diseases. Hydrogen peroxide (H2O2) has been applied as an oxidative stress inducer for the in vitro studies. Here, we report the in vivo effect of H2O2 exposure to the mouse retina and its underlying mechanism. METHODS: The H2O2 or saline solution was intravitreally injected into the eyes of female C57BL/6J mice for two consecutive days. The retinal structure was evaluated by in vivo imaging using spectral domain optical coherence tomography (OCT) and validated by histological assessment as well as retinal marker expression. In addition, retinal stress, cell apoptosis, and antioxidant enzyme expression were also determined. RESULTS: Retinal and outer nuclear layer thickness thinning was observed at days 7 and 14 by OCT imaging with the treatment of 10 µg H2O2, which was confirmed by the histopathological analysis. The expressions of photoreceptor (Rho, Rora, Rorb, and Rcvrn), bipolar cell (Chat and Calb2), and retinal pigment epithelial (Rpe65) markers were reduced in the H2O2-treated group, whereas the expression of retinal ganglion cell marker (Tubb3) was increased. TUNEL-positive cells were obviously found in the outer nuclear layer and inner nuclear layer of H2O2-treated mice but sparely found in the ganglion cell layer. Coherently, apoptotic gene expressions (Casp3, Casp9, Bax, and Parp8) were significantly increased in the retina with increasing dosages of H2O2, while Bcl2 expression was mildly decreased. In addition, the expressions of Gfap and antioxidant enzyme genes (Txn2, Sod2, and Gpx4) were significantly upregulated in the retina after the H2O2 treatment, compared to the vehicle control group. CONCLUSIONS: This study revealed that intravitreal injection of H2O2 induces acute retinal damage by increasing oxidative stress and cell apoptosis in the retina. This acute retinal degeneration mouse model could provide a platform for drug screening against oxidative stress and retinal diseases.


Subject(s)
Apoptosis/drug effects , Hydrogen Peroxide/toxicity , Oxidants/toxicity , Oxidative Stress/drug effects , Retinal Degeneration/chemically induced , Animals , Disease Models, Animal , Female , Hydrogen Peroxide/administration & dosage , Intravitreal Injections , Mice , Mice, Inbred C57BL , Oxidants/administration & dosage , Retinal Degeneration/pathology
SELECTION OF CITATIONS
SEARCH DETAIL