Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891896

ABSTRACT

Heat shock proteins (HSPs) are a class of highly conserved proteins that play an important role in biological responses to various environmental stresses. The mariculture of Thamnaconus septentrionalis, a burgeoning aquaculture species in China, frequently encounters stressors such as extreme temperatures, salinity variations, and elevated ammonia levels. However, systematic identification and analysis of the HSP70 and HSP90 gene families in T. septentrionalis remain unexplored. This study conducted the first genome-wide identification of 12 HSP70 and 4 HSP90 genes in T. septentrionalis, followed by a comprehensive analysis including phylogenetics, gene structure, conserved domains, chromosomal localization, and expression profiling. Expression analysis from RNA-seq data across various tissues and developmental stages revealed predominant expression in muscle, spleen, and liver, with the highest expression found during the tailbud stage, followed by the gastrula, neurula, and juvenile stages. Under abiotic stress, most HSP70 and HSP90 genes were upregulated in response to high temperature, high salinity, and low salinity, notably hspa5 during thermal stress, hspa14 in high salinity, and hsp90ab1 under low salinity conditions. Ammonia stress led to a predominance of downregulated HSP genes in the liver, particularly hspa2, while upregulation was observed in the gills, especially for hsp90b1. Quantitative real-time PCR analysis corroborated the expression levels under environmental stresses, validating their involvement in stress responses. This investigation provides insights into the molecular mechanisms of HSP70 and HSP90 in T. septentrionalis under stress, offering valuable information for future functional studies of HSPs in teleost evolution, optimizing aquaculture techniques, and developing stress-resistant strains.


Subject(s)
HSP70 Heat-Shock Proteins , HSP90 Heat-Shock Proteins , Phylogeny , Stress, Physiological , Animals , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Stress, Physiological/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Multigene Family , Gene Expression Profiling , Fishes/genetics , Fishes/metabolism , Salinity
2.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928167

ABSTRACT

The placenta is a crucial determinant of fetal survival, growth, and development. Deficiency in placental development directly causes intrauterine growth retardation (IUGR). IUGR can lead to fetal growth restriction and an increase in the mortality rate. The genetic mechanisms underlying IUGR development, however, remain unclear. In the present study, we integrated whole-genome DNA methylation and transcriptomic analyses to determine distinct gene expression patterns in various placental tissues to identify pivotal genes that are implicated with IUGR development. By performing RNA-sequencing analysis, 1487 differentially expressed genes (DEGs), with 737 upregulated and 750 downregulated genes, were identified in IUGR pigs (H_IUGR) compared with that in normal birth weight pigs (N_IUGR) (p < 0.05); furthermore, 77 miRNAs, 1331 lncRNAs, and 61 circRNAs were differentially expressed. The protein-protein interaction network analysis revealed that among these DEGs, the genes GNGT1, ANXA1, and CDC20 related to cellular developmental processes and blood vessel development were the key genes associated with the development of IUGR. A total of 495,870 differentially methylated regions were identified between the N_IUGR and H_IUGR groups, which included 25,053 differentially methylated genes (DMEs); moreover, the overall methylation level was higher in the H_IUGR group than in the N_IUGR group. Combined analysis showed an inverse correlation between methylation levels and gene expression. A total of 1375 genes involved in developmental processes, tissue development, and immune system regulation exhibited methylation differences in gene expression levels in the promoter regions and gene ontology regions. Five genes, namely, ANXA1, ADM, NRP2, SHH, and SMAD1, with high methylation levels were identified as potential contributors to IUGR development. These findings provide valuable insights that DNA methylation plays a crucial role in the epigenetic regulation of gene expression and mammalian development and that DNA-hypermethylated genes contribute to IUGR development in Rongchang pigs.


Subject(s)
DNA Methylation , Fetal Growth Retardation , Placenta , Animals , Fetal Growth Retardation/genetics , Swine , Female , Pregnancy , Placenta/metabolism , Gene Expression Profiling , Protein Interaction Maps/genetics , Epigenesis, Genetic , MicroRNAs/genetics , Transcriptome/genetics , Gene Regulatory Networks
3.
Ecotoxicol Environ Saf ; 232: 113256, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35131585

ABSTRACT

In this study, γ-aminobutyric acid (GABA) was examined as an additional supplement to improve the ammonia stress resistance of S. pharaonis. Specifically, we added different doses of GABA (0, 20, 40, 60, 80, and 100 mg/kg) to food, cultivated S. pharaonis in regular seawater for 8 weeks and then in 8.40 mg/L ammonia seawater for 48 h and then investigated the accumulation of ammonia (the hepatic ammonia content), ammonia detoxification process (the urea content), antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT) enzyme activities), immune response (the serum haemolytic complement (C3) and lysozyme (LYZ) contents), membrane lipid peroxidation (malondialdehyde (MDA)) and histopathology of the liver. The results showed that ammonia poisoning could induce ammonia and MDA accumulation and subsequently lead to oxidative stress (decreases in SOD and CAT activities), immunosuppression (reductions in the haemolytic C3 and LYZ content), and histopathological injury in the liver. The application of GABA had a significant effect on alleviating the adverse effect of ammonia poisoning, and 80-100 mg/kg treatment exerted the best effect. This treatment significantly reduced the ammonia and MDA contents, significantly increased the urea content, increased the SOD, CAT, C3 and LYZ activities, reduced the MDA content, suppressed membrane lipid peroxidation, and significantly improved the histopathological injury to the liver. In summary, the results could provide a new method for mitigating liver damage, alleviating the physiological and metabolic disorders caused by ammonia stress in cuttlefish, and provide a theoretical basis for the application of GABA in alleviating ammonia poisoning.


Subject(s)
Sepia , Ammonia/metabolism , Ammonia/toxicity , Animals , Antioxidants/metabolism , Catalase/metabolism , Decapodiformes , Immunity , Oxidative Stress , Superoxide Dismutase/metabolism , gamma-Aminobutyric Acid/metabolism
4.
Pain Manag Nurs ; 22(3): 268-280, 2021 06.
Article in English | MEDLINE | ID: mdl-32950391

ABSTRACT

OBJECTIVES: This systematic review aimed to summarize and provide an update on clinical studies investigating the effects of auricular point acupressure (APA) on pain relief, in addition to the APA methods of delivery and operation. DESIGN: A systematic review. DATA SOURCES: A systematic review on literatures published on five English (PubMed, Web of Science, Embase, EBSCO, and Cochrane databases) and four major Chinese databases (China National Knowledge Infrastructure, Wan Fang Data, Chinese Scientific Journals Database [VIP], and SinoMed) was conducted. METHOD: We screened nine electronic databases from the time of their respective establishment until December 20, 2019. Randomized controlled trials and studies that defined an APA intervention measure and evaluated pain intensity were considered. We individually categorized and analyzed 46 studies considering the following: (1) acute or chronic pain and (2) whether the outcomes positively or negatively support the effectiveness of APA on pain intensity. We also summarized the methods of delivery used (including the acupoint selection, stimulator selection, method of taping seeds on the ears, frequency of replacing seeds, suitability of acupressure intensity, acupressure frequency, and pressing time) and APA operator. RESULTS: Regardless of pain intensity, APA effectively treated most acute pain when combined with other interventions. Although it was used alone to treat low back pain and dysmenorrhea, other chronic diseases typically underwent a combination of APA with other interventions. The 43 positive studies revealed that acute pain required shorter APA intervention periods than chronic pain. Corresponding acupoints and nervous system acupoints were chosen. Vaccaria seeds, the single-ear method (including the alternate-ear method), and daily seed replacement were commonly adopted. Deqi was considered an effective signal for appropriate acupressure intensity. Additionally, the patients could effectively apply acupressure. CONCLUSION: This systematic review revealed important trends in APA treatments, which could be essential in determining treatment efficacy.


Subject(s)
Acupressure , Chronic Pain , Pain Management , Acupuncture Points , Chronic Pain/therapy , Ear Auricle , Humans
5.
Dev Genes Evol ; 228(6): 243-254, 2018 12.
Article in English | MEDLINE | ID: mdl-30374762

ABSTRACT

Strobilation is a unique asexual reproduction mode of scyphozoan jellyfish, through which benthic polyp develops into pelagic medusa. It is an orderly metamorphosis process triggered by environmental signals. However, the knowledges of molecular mechanisms under the drastic morphological and physiological changes are still limited. In this study, the transcriptomes from polyps to juvenile medusae at different stages were characterized by RNA-seq in scyphozoan jellyfish Rhopilema esculentum. Among 96,076 de novo assembled unigenes, 7090 differentially expressed genes (DEGs) were identified during the developmental stages. The co-expression pattern analysis of DEGs yielded 15 clusters with different expression patterns. Among them, a cluster with 388 unigenes was related to strobila. In this specific cluster, the GO terms related to "sequence-specific DNA binding transcription factor activity" and "sequence-specific DNA binding" were significantly enriched. Transcription factors, including segmentation protein even-skipped-like, segmentation polarity protein engrailed-like, homeobox proteins Otx-like, Twist-like and Cnox2-Pc-like, as well as genes such as RxR-like and Dmrtf-like, were identified to be potentially involved in strobilation. Their expression patterns and the other 11 TFs/genes involved in strobilation were confirmed with qRT-PCR methods. The present study pointed out the role of transcription factors in strobilation and produced a list of novel candidate genes for further studies. It could provide valuable information for understanding the molecular mechanisms of jellyfish strobilation.


Subject(s)
Scyphozoa/genetics , Scyphozoa/physiology , Animals , Phylogeny , Polymerase Chain Reaction , Reproduction, Asexual , Scyphozoa/classification , Transcription Factors/genetics , Transcriptome
6.
Appl Opt ; 56(20): 5668-5675, 2017 Jul 10.
Article in English | MEDLINE | ID: mdl-29047709

ABSTRACT

The fractional Fourier transform (FRT) has been used for computing holograms in holographic displays due to its continuity of describing wave diffraction in the near field and far field. In this study, we propose a method to realize a full-color holographic 3D display with combined use of the FRT and the free-space Fresnel diffraction. A slice-based optical configuration and the calculation algorithm of the FRT are proposed for generating phase-only holograms of full-color 3D objects. Sequential phase-only holograms are generated for reducing the speckle noise of reconstructed images by the time-averaging effect. Free-space Fresnel diffraction is used for 3D image reconstruction from the generated holograms. The relationship between the fractional orders of different color channels and the free-space Fresnel diffraction distance is analyzed. Chromatic aberrations caused by different wavelengths of RGB lasers are also compensated. A full-color holographic display system using a reflective phase-only spatial light modulator (SLM) is established. Both the numerical and optical reconstruction results demonstrate the feasibility of the proposed method.

7.
Appl Opt ; 56(27): 7656, 2017 09 20.
Article in English | MEDLINE | ID: mdl-29047744

ABSTRACT

We have addressed some errors in our recent work [Appl. Opt.56, 5668 (2017)APOPAI0003-693510.1364/AO.56.005668]. Especially, we note that the formulae for reconstruction of phase-only holograms are different from the formulae for amplitude holograms. So Eqs. (9) and (12) must be modified.

8.
BMC Biol ; 14: 52, 2016 06 27.
Article in English | MEDLINE | ID: mdl-27349893

ABSTRACT

BACKGROUND: Genesis of novel gene regulatory modules is largely responsible for morphological and functional evolution. De novo generation of novel cis-regulatory elements (CREs) is much rarer than genomic events that alter existing CREs such as transposition, promoter switching or co-option. Only one case of de novo generation has been reported to date, in fish and without involvement of phenotype alteration. Yet, this event likely occurs in other animals and helps drive genetic/phenotypic variation. RESULTS: Using a porcine model of spontaneous hearing loss not previously characterized we performed gene mapping and mutation screening to determine the genetic foundation of the phenotype. We identified a mutation in the non-regulatory region of the melanocyte-specific promoter of microphthalmia-associated transcription factor (MITF) gene that generated a novel silencer. The consequent elimination of expression of the MITF-M isoform led to early degeneration of the intermediate cells of the cochlear stria vascularis and profound hearing loss, as well as depigmentation, all of which resemble the typical phenotype of Waardenburg syndrome in humans. The mutation exclusively affected MITF-M and no other isoforms. The essential function of Mitf-m in hearing development was further validated using a knock-out mouse model. CONCLUSIONS: Elimination of the MITF-M isoform alone is sufficient to cause deafness and depigmentation. To our knowledge, this study provides the first evidence of a de novo CRE in mammals that produces a systemic functional effect.


Subject(s)
Hearing Loss/genetics , Microphthalmia-Associated Transcription Factor/genetics , Silencer Elements, Transcriptional/genetics , Sus scrofa/genetics , Animals , Base Sequence , Chromosome Mapping , Cochlea/pathology , Cochlea/physiopathology , Disease Models, Animal , Electrophysiological Phenomena , Gene Expression Regulation , Genetic Testing , Genome-Wide Association Study , Hearing Loss/physiopathology , Microphthalmia-Associated Transcription Factor/metabolism , Mutation/genetics , Phenotype , Promoter Regions, Genetic , Protein Isoforms/genetics , Transcription, Genetic
9.
Int J Mol Sci ; 17(10)2016 Oct 22.
Article in English | MEDLINE | ID: mdl-27782082

ABSTRACT

Golden cuttlefish Sepia esculenta Hoyle is an economically important cephalopod species. However, artificial hatching is currently challenged by low survival rate of larvae due to abnormal embryonic development. Dissecting the genetic foundation and regulatory mechanisms in embryonic development requires genomic background knowledge. Therefore, we carried out a transcriptome sequencing on Sepia embryos and larvae via mRNA-Seq. 32,597,241 raw reads were filtered and assembled into 98,615 unigenes (N50 length at 911 bp) which were annotated in NR database, GO and KEGG databases respectively. Digital gene expression analysis was carried out on cleavage stage embryos, healthy larvae and malformed larvae. Unigenes functioning in cell proliferation exhibited higher transcriptional levels at cleavage stage while those related to animal disease and organ development showed increased transcription in malformed larvae. Homologs of key genes in regulatory pathways related to early development of animals were identified in Sepia. Most of them exhibit higher transcriptional levels in cleavage stage than larvae, suggesting their potential roles in embryonic development of Sepia. The de novo assembly of Sepia transcriptome is fundamental genetic background for further exploration in Sepia research. Our demonstration on the transcriptional variations of genes in three developmental stages will provide new perspectives in understanding the molecular mechanisms in early embryonic development of cuttlefish.


Subject(s)
Gene Expression Regulation, Developmental , Genome , Molecular Sequence Annotation , Sepia/genetics , Transcriptome , Animals , Embryo, Nonmammalian/metabolism , Gene Ontology , Gene Regulatory Networks , Larva/genetics , Larva/growth & development , Metabolic Networks and Pathways/genetics , Sepia/growth & development
10.
Gene ; 897: 148065, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38070789

ABSTRACT

Aquatic animals immune response to pathogenic is a hotspot and related to high-quality development of aquaculture industry and the conservation of fisheries resources. Thamnaconus modestus is an important commercial and economical species which is suffering from various pathogens but by now lack relevant research about revealing the immune response mechanism to the pathogens invasion. In the study, the polyriboinosinic polyribocytidylic acid [poly (I:C)] and Lipopolysaccharides (LPS), respective mimics of viral and bacterial infections, were used to demonstrate the immune response of the species via transcriptome analysis. The results showed that T. modestus had sensitive responses to the viral analog infection at 6 h and 48 h, and at 6 h, the first five major functional genes were NFKBIA, IL1B, JUN, IGH, FOS, and at 48 h, the genes were NFKBIA, IL1B, JUN, IGH, FOS. The genes IL1B, IRF3, PTGS2, THBS1 could helping the fish to fight against the bacterial infection in both the times. Similarly for the bacterial infection, the species had a sensitive response at 6 h, and the first five major functional genes were NFKBIA, JUN, FOS, L1B, GRIN2C. Our study provided an insight about the immune response mechanism of this species and demonstrated that if need for treatment of the virus and bacteria by the biotechnology, the artificial interferential time would be suggested before 6 h since the pathological features occur and the genes NFKBIA, JUN, IL1B, FOS, TRAF2, IL8, SOCS3, PTGS2 should be payed more attention.


Subject(s)
Bacterial Infections , Lipopolysaccharides , Animals , Lipopolysaccharides/pharmacology , Poly I-C/pharmacology , Cyclooxygenase 2 , Gene Expression Profiling , Immunity
11.
Genes (Basel) ; 15(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38927618

ABSTRACT

The East Asian common octopus (Octopus sinensis) is an economically important species among cephalopods. This species exhibits a strict dioecious and allogamous reproductive strategy, along with a phenotypic sexual dimorphism, where the third right arm differentiates into hectocotylus in males. However, our understanding of the molecular mechanisms that underlie sex determination and differentiation in this species remains limited. In the present study, we surveyed gene-expression profiles in the immature male and female gonads of O. sinensis based on the RNA-seq, and a total of 47.83 Gb of high-quality data were generated. Compared with the testis, we identified 8302 differentially expressed genes (DEGs) in the ovary, of which 4459 genes were up-regulated and 3843 genes were down-regulated. Based on the GO enrichment, many GO terms related to sex differentiation were identified, such as sex differentiation (GO: 0007548), sexual reproduction (GO: 0019953) and male sex differentiation (GO: 0046661). A KEGG classification analysis identified three conserved signaling pathways that related to sex differentiation, including the Wnt signaling pathway, TGF-ß signaling pathway and Notch signaling pathway. Additionally, 21 sex-related DEGs were selected, of which 13 DEGs were male-biased, including Dmrt1, Foxn5, Foxj1, Sox30, etc., and 8 DEGs were female-biased, including Sox14, Nanos3, ß-tubulin, Suh, etc. Ten DEGs were used to verify the expression patterns in the testis and ovary using the RT-qPCR method, and the results showed that the expression level shown by RT-qPCR was consistent with that from the RNA-seq, which confirmed the reliability of the transcriptome data. The results presented in this study will not only contribute to our understanding of sex-formation mechanisms in O. sinensis but also provide the foundational information for further investigating the molecular mechanisms that underline its gonadal development and facilitate the sustainable development of octopus artificial breeding.


Subject(s)
Octopodiformes , Sex Differentiation , Transcriptome , Animals , Female , Male , Gene Expression Profiling/methods , Octopodiformes/genetics , Ovary/metabolism , Ovary/growth & development , Sex Determination Processes/genetics , Sex Differentiation/genetics , Signal Transduction/genetics , Testis/metabolism , Testis/growth & development , Transcriptome/genetics , Asia, Eastern
12.
PLoS One ; 19(3): e0300074, 2024.
Article in English | MEDLINE | ID: mdl-38457382

ABSTRACT

BACKGROUND: Observational studies have suggested associations between sedentary behaviors (SB), physical activity (PA), sleep duration (SD), and obesity, but the causal relationships remain unclear. METHODS: We used Mendelian randomization (MR) with genetic variation as instrumental variables (IVs) to assess the causality between SB/PA/SD and obesity. Genetic variants associated with SB/PA/SD were obtained from Genome-wide association study (GWAS), and obesity data came from FinnGen. The primary MR analysis used the instrumental variable weighted (IVW) method, with sensitivity tests including Cochran Q, MR-Egger intercepts, and MR-Radial. Expression Quantitative Trait Loci (eQTL) analysis was applied to identify significant genetic associations and biological pathways in obesity-related tissues. RESULTS: The MR analysis revealed causal relationships between four SB-related lifestyle patterns and obesity. Specifically, increased genetic liability to television watching (IVW MR Odds ratio [OR] = 1.55, [95% CI]:[1.27, 1.90], p = 1.67×10-5), computer use ([OR] = 1.52, [95% CI]:[1.08, 2.13], p = 1.61×10-2), leisure screen time (LST) ([OR] = 1.62, [95% CI] = [1.43, 1.84], p = 6.49×10-14, and driving (MR [OR] = 2.79, [95% CI]:[1.25, 6.21], p = 1.23×10-2) was found to increase the risk of obesity. Our findings indicate that no causal relationships were observed between SB at work, sedentary commuting, PA, SD, and obesity. The eQTL analysis revealed strong associations between specific genes (RPS26, TTC12, CCDC92, NICN1) and SNPs (rs10876864, rs2734849, rs4765541, rs7615206) in both subcutaneous and visceral adipose tissues, which are associated with these SBs. Enrichment analysis further revealed that these genes are involved in crucial biological pathways, including cortisol synthesis, thyroid hormone synthesis, and insulin secretion. CONCLUSIONS: Our findings support a causal relationship between four specific SBs (LST, television watching, computer use, driving) and obesity. These results provide valuable insights into potential interventions to address obesity effectively, supported by genetic associations in the eQTL and enrichment analysis. Further research and public health initiatives focusing on reducing specific SBs may be warranted.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Sleep Duration , Exercise , Obesity/genetics , Proteins
13.
Seizure ; 120: 180-188, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39029408

ABSTRACT

OBJECTIVE: To expand the clinical phenotype and mutation spectrum of familial mesial temporal lobe epilepsy (FMTLE) and provide a new perspective for exploring the pathological mechanisms of epilepsy caused by leucine-rich glioma inactivated 1 (LGI1) variants. METHODS: We reported clinical data from two families with FMTLE and screened patients for variants in the LGI1 gene using Whole-exome sequencing and Sanger sequencing. The clinical features of FMTLE were analysed. The pathogenicity of the causative loci was assessed according to the American College of Medical Genetics and Genomics guidelines, and potential pathogenic mechanisms were predicted through multiple bioinformatics and molecular dynamics software. RESULTS: We identified two novel LGI1 truncating variants within two large families with FMTLE: LGI1 (c.1174C>T, p.Q392X) and LGI1 (c.703C>T, p.Q235X). Compared to previous reports, we found that focal to bilateral tonic-clonic seizures are a common type of seizure in FMTLE. The clinical phenotypes of patients with FMTLE caused by LGI1 variants were relatively mild, and all patients responded well to valproic acid. Bioinformatics analyses and molecular dynamics simulations showed that protein structure and interactions were considerably weakened or damaged as a result of both variants. CONCLUSION: This study presents the first report identifying LGI1 as a potential novel pathogenic gene within FMTLE families, thereby broadening the mutation spectrum associated with FMTLE. The findings of this study offer novel insights and avenues for understanding the intricate molecular mechanisms underlying LGI1 variants and their correlations with patient phenotypes. This study proposes the possibility of familial focal epilepsy syndromes overlapping.


Subject(s)
Epilepsy, Temporal Lobe , Intracellular Signaling Peptides and Proteins , Pedigree , Phenotype , Adult , Female , Humans , Male , Young Adult , Epilepsy, Temporal Lobe/genetics , Epilepsy, Temporal Lobe/physiopathology , Epilepsy, Temporal Lobe/congenital , Intracellular Signaling Peptides and Proteins/genetics , Mutation , Child , Adolescent
14.
Nurs Open ; 10(4): 2192-2202, 2023 04.
Article in English | MEDLINE | ID: mdl-36564937

ABSTRACT

AIM: To develop health literacy assessment instrument for patients with chronic pain. DESIGN: Qualitative methods based on Delphi technique, assessed against the CREDES checklist. METHODS: A 2-round Delphi method was adopted in this study. The panel consisted of 19 experts. RESULTS: The health literacy assessment instrument for chronic pain patients was constructed, which contained 3 dimensions (functional health literacy, interactive health literacy and critical health literacy) and 41 items. The positive coefficients of two rounds Delphi were 100.00% and 89.5%, respectively. The authority coefficient of experts was 0.848 and 0.858, respectively. The coordination coefficients of dimension and items were 0.222 and 0.364, respectively. CONCLUSIONS: The health literacy assessment instrument dimensions and items for patients with chronic pain based on a Delphi method are valid. This instrument is suitable for investigating the health literacy level of patients with chronic pain.


Subject(s)
Chronic Pain , Health Literacy , Humans , Delphi Technique , Health Status , Checklist
15.
Mar Pollut Bull ; 187: 114609, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36652861

ABSTRACT

Jellyfish are planktonic predators that may be susceptible to ingesting microplastics. However, the effects of MP exposure on jellyfish are poorly understood. In this study, the ingestion and egestion of polystyrene microbeads, and its chronic physiological effects on Rhopilema esculentum at an environmental concentration (100 items/L) and a predicted concentration (1000 items/L) were evaluated. The results showed that the ingestion amount of juvenile medusae was relatively low. The MP egestion rates reached 100 % within 9 h of clearance. Chronic exposure (15 days) to MPs at environmental concentrations led to no adverse impacts. Nevertheless, the predicted concentration of MP exposure induced growth inhibition, a reduction in assimilation efficiency, oxygen consumption increase, and lipase enzyme activity reduction in the jellyfish, indicating that MPs can cause adverse effects on the energy budget of jellyfish in the near future. Our study provides new insights into the potential risk of MPs in marine environments.


Subject(s)
Scyphozoa , Water Pollutants, Chemical , Animals , Microplastics , Polystyrenes/toxicity , Polystyrenes/analysis , Plastics/toxicity , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Scyphozoa/physiology , Eating
16.
Mar Biotechnol (NY) ; 25(5): 800-814, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37566262

ABSTRACT

The black scraper (Thamnaconus modestus) is an important commercial species in China. However, with the rapid expansion of aquaculture, the culture of this species faces substantial economic losses due to infectious diseases. Toll-like receptors (TLRs) recognize a wide range of pathogen-associated molecular patterns (PAMPs) and play a crucial role in disease resistance by initiating innate immune responses in the host. The genome of the black scraper comprises eight TLR members, which can be classified into five subfamilies based on evolutionary analysis. Moreover, the TmTLRs were identified on 6 out of the 20 chromosomes in the black scraper. The functional similarity within the same subfamilies is evident by conserved motifs and gene structures. The qRT-PCR experiments revealed diverse TmTLR expression patterns in the liver, intestine, spleen, head kidney, heart, and brain of black scrapers, with high expression levels observed in immune organs, suggesting that TmTLRs may participate in the regulation of immune mechanisms and other physiological functions in the black scraper. At least six TmTLRs showed significantly upregulated expression in response to poly (I: C) or lipopolysaccharide (LPS) stresses, thus indicating their potential roles in regulating abiotic stress responses. In conclusion, our findings not only provide a foundation for future research on the TLR gene family in the black scraper but also offer guidance for disease prevention and vaccine development.


Subject(s)
Tetraodontiformes , Toll-Like Receptors , Animals , Toll-Like Receptors/genetics , Genome , Tetraodontiformes/genetics , Genomics , China , Immunity, Innate/genetics , Phylogeny
17.
Theriogenology ; 211: 105-114, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37603936

ABSTRACT

Mummified piglets are among the leading causes of fertility loss and severely hamper reproductive performance in pigs. However, the contributions of genomic variation to the emergence of mummified piglets (MUM) have rarely been studied. This study aims to (1) elucidate the genetic architecture of MUM in sows of parity 1 - 3 using a single-step genome-wide association study (ssGWAS). The ssGWAS involved genotyping-by-sequencing of Large White and Landrace pig breeds. (2) Explore the biological role of the candidate genes at the cellular level. A total of 185 and 48 genome-wide significant SNPs are associated with MUM in Large White and Landrace pigs, explaining 0.01-36.52% genetic variance for different significant loci, respectively. All the significant SNPs are parity-specific, and the numerous, consecutive significant loci likely generated the nine significant peaks in different parities. Multiple candidate genes (including CYP24A1, FBXO30, and ARHGEF28) are associated with fetal congenital and maternal diseases. Collectively, CYP24A1 regulation contributes to steady-state levels of embryo development genes. CYP24A1 is involved in reproduction and, immune and gestational disorders. Thus, it is associated with known newborn death traits and MUM in Large White sows. Altogether, these results improve the current understanding of the genetic architecture of MUM and expand the knowledge on genetic variations for selecting against mummified piglets in pig breeding.


Subject(s)
Fetal Death , Vitamin D3 24-Hydroxylase , Animals , Female , Pregnancy , Embryonic Development , Fertility , Genome-Wide Association Study/veterinary , Swine/genetics , Swine Diseases , Vitamin D3 24-Hydroxylase/genetics , Sus scrofa
18.
Aging (Albany NY) ; 15(16): 8220-8236, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37606987

ABSTRACT

Multiple myeloma (MM) is the second most common hematological malignancy, in which the dysfunction of the ubiquitin-proteasome pathway is associated with the pathogenesis. The valosin containing protein (VCP)/p97, a member of the AAA+ ATPase family, possesses multiple functions to regulate the protein quality control including ubiquitin-proteasome system and molecular chaperone. VCP is involved in the occurrence and development of various tumors while still elusive in MM. VCP inhibitors have gradually shown great potential for cancer treatment. This study aims to identify if VCP is a therapeutic target in MM and confirm the effect of a novel inhibitor of VCP (VCP20) on MM. We found that VCP was elevated in MM patients and correlated with shorter survival in clinical TT2 cohort. Silencing VCP using siRNA resulted in decreased MM cell proliferation via NF-κB signaling pathway. VCP20 evidently inhibited MM cell proliferation and osteoclast differentiation. Moreover, exosomes containing VCP derived from MM cells partially alleviated the inhibitory effect of VCP20 on cell proliferation and osteoclast differentiation. Mechanism study revealed that VCP20 inactivated the NF-κB signaling pathway by inhibiting ubiquitination degradation of IκBα. Furthermore, VCP20 suppressed MM cell proliferation, prolonged the survival of MM model mice and improved bone destruction in vivo. Collectively, our findings suggest that VCP is a novel target in MM progression. Targeting VCP with VCP20 suppresses malignancy progression of MM via inhibition of NF-κB signaling pathway.


Subject(s)
Exosomes , Multiple Myeloma , Animals , Mice , ATPases Associated with Diverse Cellular Activities , Cell Differentiation , Cell Proliferation , NF-kappa B , Osteoclasts , Proteasome Endopeptidase Complex , Signal Transduction , Ubiquitins , Valosin Containing Protein
19.
Article in English | MEDLINE | ID: mdl-35131601

ABSTRACT

During rearing in hatcheries and transportation to restocking sites, sea cucumbers are often exposed to air for several hours, which may depress their non-specific immunity and lead to mass mortality. We performed transcriptome analysis of Apostichopus japonicus coelomocytes after air exposure to identify stress-related genes and pathways. After exposure to air for 1 h, individuals were re-submerged in aerated seawater and coelomocytes were collected at 0, 1, 4, and 16 h (B, H1, H4, and H16, respectively). We identified 6148 differentially expressed genes, of which 3216 were upregulated and 2932 were downregulated. Many genes involved in the immune response, antioxidant defense, and apoptosis were highly induced in response to air exposure. Enrichment analysis of Gene Ontology terms showed that the most abundant terms in the biological process category were oxidation-reduction process, protein folding and phosphorylation, and receptor-mediated endocytosis for the comparison of H1 vs. B, H4 vs. H1, and H16 vs. H4, respectively. Kyoto Eecyclopedia of Genes and Genomes enrichment analysis showed that six pathways related to the metabolism of proteins, fats, and carbohydrates were shared among the three comparisons. These results indicated that sea cucumbers regulate the expression of genes related to the antioxidant system and energy metabolism to resist the negative effects of air exposure stress. These findings may be applied to optimize juvenile sea cucumber production, and facilitate molecular marker-assisted selective breeding of an anoxia-resistant strain.


Subject(s)
Sea Cucumbers , Stichopus , Animals , Antioxidants/metabolism , Gene Expression Profiling , Humans , Immunity, Innate , Sea Cucumbers/genetics , Sea Cucumbers/metabolism , Stichopus/physiology , Transcriptome
20.
Yonsei Med J ; 63(5): 480-489, 2022 May.
Article in English | MEDLINE | ID: mdl-35512751

ABSTRACT

PURPOSE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen of coronavirus disease 2019. Diagnostic methods based on the clustered regularly interspaced short palindromic repeats (CRISPR) have been developed to detect SARS-CoV-2 rapidly. Therefore, a systematic review and meta-analysis were performed to assess the diagnostic accuracy of CRISPR for detecting SARS-CoV-2 infection. MATERIALS AND METHODS: Studies published before August 2021 were retrieved from four databases, using the keywords "SARS-CoV-2" and "CRISPR." Data were collected from these publications, and the sensitivity, specificity, negative likelihood ratio (NLR), positive likelihood ratio (PLR), and diagnostic odds ratio (DOR) were calculated. The summary receiver operating characteristic curve was plotted for analysis with MetaDiSc 1.4. The Stata 15.0 software was used to draw Deeks' funnel plots to evaluate publication bias. RESULTS: We performed a pooled analysis of 38 independent studies shown in 30 publications. The reference standard was reverse transcription-quantitative PCR. The results indicated that the sensitivity of CRISPR-based methods for diagnosis was 0.94 (95% CI 0.93-0.95), the specificity was 0.98 (95% CI 0.97-0.99), the PLR was 34.03 (95% CI 20.81-55.66), the NLR was 0.08 (95% CI 0.06-0.10), and the DOR was 575.74 (95% CI 382.36-866.95). The area under the curve was 0.9894. CONCLUSION: Studies indicate that a diagnostic method based on CRISPR has high sensitivity and specificity. Therefore, this would be a potential diagnostic tool to improve the accuracy of SARS-CoV-2 detection.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , ROC Curve , Reference Standards , SARS-CoV-2/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL