Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 472
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 23(10): 1424-1432, 2022 10.
Article in English | MEDLINE | ID: mdl-36138187

ABSTRACT

B cell progenitor acute lymphoblastic leukemia (B-ALL) treatment has been revolutionized by T cell-based immunotherapies-including chimeric antigen receptor T cell therapy (CAR-T) and the bispecific T cell engager therapeutic, blinatumomab-targeting surface glycoprotein CD19. Unfortunately, many patients with B-ALL will fail immunotherapy due to 'antigen escape'-the loss or absence of leukemic CD19 targeted by anti-leukemic T cells. In the present study, we utilized a genome-wide CRISPR-Cas9 screening approach to identify modulators of CD19 abundance on human B-ALL blasts. These studies identified a critical role for the transcriptional activator ZNF143 in CD19 promoter activation. Conversely, the RNA-binding protein, NUDT21, limited expression of CD19 by regulating CD19 messenger RNA polyadenylation and stability. NUDT21 deletion in B-ALL cells increased the expression of CD19 and the sensitivity to CD19-specific CAR-T and blinatumomab. In human B-ALL patients treated with CAR-T and blinatumomab, upregulation of NUDT21 mRNA coincided with CD19 loss at disease relapse. Together, these studies identify new CD19 modulators in human B-ALL.


Subject(s)
Burkitt Lymphoma , Lymphoma, B-Cell , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Antigens, CD19/genetics , Antigens, CD19/metabolism , Cleavage And Polyadenylation Specificity Factor/metabolism , Humans , Immunotherapy, Adoptive/adverse effects , Membrane Glycoproteins/metabolism , Polyadenylation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Chimeric Antigen/metabolism , Trans-Activators/metabolism
2.
Proc Natl Acad Sci U S A ; 120(24): e2218828120, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37276416

ABSTRACT

The foundations of today's societies are provided by manufactured capital accumulation driven by investment decisions through time. Reconceiving how the manufactured assets are harnessed in the production-consumption system is at the heart of the paradigm shifts necessary for long-term sustainability. Our research integrates 50 years of economic and environmental data to provide the global legacy environmental footprint (LEF) and unveil the historical material extractions, greenhouse gas emissions, and health impacts accrued in today's manufactured capital. We show that between 1995 and 2019, global LEF growth outpaced GDP and population growth, and the current high level of national capital stocks has been heavily relying on global supply chains in metals. The LEF shows a larger or growing gap between developed economies (DEs) and less-developed economies (LDEs) while economic returns from global asset supply chains disproportionately flow to DEs, resulting in a double burden for LDEs. Our results show that ensuring best practice in asset production while prioritizing well-being outcomes is essential in addressing global inequalities and protecting the environment. Achieving this requires a paradigm shift in sustainability science and policy, as well as in green finance decision-making, to move beyond the focus on the resource use and emissions of daily operations of the assets and instead take into account the long-term environmental footprints of capital accumulation.

3.
Mol Cell ; 68(2): 259-261, 2017 10 19.
Article in English | MEDLINE | ID: mdl-29053952

ABSTRACT

In this issue of Molecular Cell, Tan et al. (2017) provide novel perspectives into the regulatory role of WHIP-TRIM14-PPP6C signalosome in enhancing RIG-I-mediated viral RNA sensing pathway.


Subject(s)
Antiviral Agents , Viruses , Carrier Proteins , DEAD Box Protein 58 , Signal Transduction
4.
Plant Mol Biol ; 114(1): 6, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38265739

ABSTRACT

tRNA-derived small RNAs (tsRNAs), a new category of regulatory small non-coding RNA existing in almost all branches of life, have recently attracted broad attention. Increasing evidence has shown that tsRNAs are not random degradation debris of tRNAs, but products cleaved by specific endoribonucleases, with versatile functions in response to various developmental and environmental cues. However, it is still unclear about the diversity, biogenesis and function of tsRNAs in plants. In this study, we comprehensively profiled 10-60 nts small RNAs in Arabidopsis thaliana leaf with or without wounding stress and identified four 16 nts tiny tRFs (tRNA-derived fragments) sharply increased after wounding, namely tRF5'Ala. Notably, genetic, biochemical and bioinformatic data indicated that RNS2, a member of class II RNase T2 enzymes, was the main endoribonuclease responsible for the biogenesis of tRF5'Ala. Moreover, tRF5'Ala was highly abundant and conserved in Arabidopsis and rice pollen. However, tRF5'Ala did not associate with AGO 1 in vivo or display any inhibitory effect on the translation of a luciferase mRNA in vitro. Altogether, our study highlights the discovery of a novel class of tiny tsRNAs drastically increased under wounding stress as well as their generation by RNS2, which provides a new insight into tsRNAs research in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ribonucleases , Computational Biology , RNA , RNA, Transfer , Arabidopsis Proteins/genetics , Ribonucleases/genetics
5.
Environ Sci Technol ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38920967

ABSTRACT

International arsenic trade, physical and virtual, has resulted in considerable transfer of arsenic pollution across regions. However, no study has systematically captured, estimated, and compared physical and virtual arsenic trade and its relevant impacts. This study combines material flow analysis and embodied emission factors to estimate embedded (including direct and indirect trade) and embodied arsenic trade during 1990-2019, encompassing 18 arsenic-containing products among 244 countries. Global embedded arsenic trade increased considerably from 47 ± 7.3 to 450 ± 68 kilotonnes (kt) during this time and was dominated by indirect arsenic trade, contributing 94 and 90% to global arsenic trade in 1990 and 2019, respectively. Since the 1990s, global arsenic trade centers and the main flows have shifted from European and American markets to developing countries. The mass of arsenic involved in embodied trade increased from 87.5 ± 26 kt in 1990 to 800 ± 236 kt in 2019. Direct trade and indirect trade aggravate arsenic environmental emissions in major importing countries, like China, while embodied trade aggravates arsenic environmental emissions in major exporting countries, like Peru and Chile. The trade-related arsenic pollution transfer calls for a rational arsenic emission responsibility-sharing mechanism and corresponding policy recommendations for different trading countries.

6.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612578

ABSTRACT

Ultraviolet radiation (UVR) has various effects on human cells and tissues, which can lead to a variety of skin diseases and cause inconvenience to people's lives. Among them, solar dermatitis is one of the important risk factors for malignant melanoma, so prevention and treatment of solar dermatitis is very necessary. Additionally, liquiritin (LQ) has anti-inflammatory effects. In this study, we aimed to evaluate the anti-inflammatory and pro-wound healing effects of liquiritin carbomer gel cold paste (LQ-CG-CP) in vitro and in vivo. The results of MTT experiments showed no cytotoxicity of LQ at concentrations of 40 µg/mL and below and cell damage at UVB irradiation doses above 60 mJ/cm2. Moreover, LQ can promote cell migration. ELISA results also showed that LQ inhibited the elevation of the inflammatory factors tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) after UVB irradiation. In the mouse model of solar dermatitis, 2% LQ-CG-CP showed the best therapeutic efficacy for wound healing and relief of itching compared to MEIBAO moist burn moisturizer (MEBO). What is more, the results of skin histopathological examination show that LQ-CG-CP promotes re-epithelialization, shrinks wounds, and promotes collagen production, thus promoting wound healing. Simultaneously, LQ-CG-CP reduced TNF-α, IL-1ß, and IL-6 expression. In addition, LQ-CG-CP was not observed to cause histopathological changes and blood biochemical abnormalities in mice. Overall, LQ-CG-CP has great potential for the treatment of solar dermatitis.


Subject(s)
Acrylic Resins , Dermatitis , Flavanones , Glucosides , Sunburn , Animals , Mice , Humans , Ultraviolet Rays , Interleukin-6 , Tumor Necrosis Factor-alpha , Wound Healing , Interleukin-1beta , Anti-Inflammatory Agents
7.
J Environ Manage ; 351: 119617, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38039590

ABSTRACT

Various studies have suggested decoupling material stock from economic output as an important measure for promoting sustainable development. Here, we develop three theoretical hypotheses to describe the evolution features and economic effects of material stock intensity, and predict in theory that (1) Countries with higher material stock intensity are more likely to decouple economic growth from material stock. (2) Material stock intensity follows convergence trends. (3) Higher material stock intensity leads to higher long-run economic growth rates. To examine the adaptability of these hypotheses, we choose steel in-use stock as the proxy for the material capital stock and use panel data in 85 countries from 1950 to 2018 to conduct empirical analysis. Our empirical results in most countries support the theoretical predictions of the hypotheses. In particular, a 0.1t/k$ increase in steel stock intensity leads to a 2.12% increase in the probability of decoupling between steel stock and economic output next year and a 0.34% increase in the long-run GDP per capita growth rate annually. Moreover, steel stock intensity converges to approximately 0.25t/k$ to 0.35t/k$ at mature development stages. We predict that, except China, which is expected to follow decoupling trends, other large developing economies will couple economic output with steel stock. However, the shape of intensity curves is still uncertain for highly developed countries in the future.


Subject(s)
Economic Development , Efficiency , China , Steel , Sustainable Development , Carbon Dioxide/analysis
8.
J Biol Chem ; 298(9): 102343, 2022 09.
Article in English | MEDLINE | ID: mdl-35933017

ABSTRACT

Proximity-dependent protein labeling provides a powerful in vivo strategy to characterize the interactomes of specific proteins. We previously optimized a proximity labeling protocol for Caenorhabditis elegans using the highly active biotin ligase TurboID. A significant constraint on the sensitivity of TurboID is the presence of abundant endogenously biotinylated proteins that take up bandwidth in the mass spectrometer, notably carboxylases that use biotin as a cofactor. In C. elegans, these comprise POD-2/acetyl-CoA carboxylase alpha, PCCA-1/propionyl-CoA carboxylase alpha, PYC-1/pyruvate carboxylase, and MCCC-1/methylcrotonyl-CoA carboxylase alpha. Here, we developed ways to remove these carboxylases prior to streptavidin purification and mass spectrometry by engineering their corresponding genes to add a C-terminal His10 tag. This allows us to deplete them from C. elegans lysates using immobilized metal affinity chromatography. To demonstrate the method's efficacy, we use it to expand the interactome map of the presynaptic active zone protein ELKS-1. We identify many known active zone proteins, including UNC-10/RIM, SYD-2/liprin-alpha, SAD-1/BRSK1, CLA-1/CLArinet, C16E9.2/Sentryn, as well as previously uncharacterized potentially synaptic proteins such as the ortholog of human angiomotin, F59C12.3 and the uncharacterized protein R148.3. Our approach provides a quick and inexpensive solution to a common contaminant problem in biotin-dependent proximity labeling. The approach may be applicable to other model organisms and will enable deeper and more complete analysis of interactors for proteins of interest.


Subject(s)
Biotinylation , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Carboxy-Lyases , Acetyl-CoA Carboxylase/metabolism , Animals , Biotinylation/methods , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Carrier Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Methylmalonyl-CoA Decarboxylase/metabolism , Pyruvate Carboxylase/metabolism , Streptavidin
9.
Blood ; 137(7): 923-928, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33025005

ABSTRACT

In hematopoietic cell transplantation (HCT), permissive HLA-DPB1 mismatches between patients and their unrelated donors are associated with improved outcomes compared with nonpermissive mismatches, but the underlying mechanism is incompletely understood. Here, we used mass spectrometry, T-cell receptor-ß (TCRß) deep sequencing, and cellular in vitro models of alloreactivity to interrogate the HLA-DP immunopeptidome and its role in alloreactive T-cell responses. We find that permissive HLA-DPB1 mismatches display significantly higher peptide repertoire overlaps compared with their nonpermissive counterparts, resulting in lower frequency and diversity of alloreactive TCRß clonotypes in healthy individuals and transplanted patients. Permissiveness can be reversed by the absence of the peptide editor HLA-DM or the presence of its antagonist, HLA-DO, through significant broadening of the peptide repertoire. Our data establish the degree of immunopeptidome divergence between donor and recipient as the mechanistic basis for the clinically relevant permissive HLA-DPB1 mismatches in HCT and show that permissiveness is dependent on HLA-DM-mediated peptide editing. Its key role for harnessing T-cell alloreactivity to HLA-DP highlights HLA-DM as a potential novel target for cellular and immunotherapy of leukemia.


Subject(s)
Epitopes/immunology , HLA-D Antigens/immunology , HLA-DP beta-Chains/immunology , Histocompatibility/immunology , Peptides/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Allografts , Antigens, Differentiation, B-Lymphocyte/metabolism , CD4-Positive T-Lymphocytes/immunology , Cells, Cultured , Endosomes/metabolism , Epitopes/metabolism , Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor , Gene Rearrangement, beta-Chain T-Cell Antigen Receptor , HeLa Cells , Hematopoietic Stem Cell Transplantation , High-Throughput Nucleotide Sequencing , Histocompatibility/genetics , Histocompatibility Antigens Class II/metabolism , Humans , Mass Spectrometry , Molecular Chaperones , Peptides/metabolism , Receptors, Antigen, T-Cell, alpha-beta/genetics , Unrelated Donors
10.
Phys Rev Lett ; 131(23): 236002, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38134785

ABSTRACT

Recently, the bilayer perovskite nickelate La_{3}Ni_{2}O_{7} has been reported to show evidence of high-temperature superconductivity (SC) under a moderate pressure of about 14 GPa. To investigate the superconducting mechanism, pairing symmetry, and the role of apical-oxygen deficiencies in this material, we perform a random-phase approximation based study on a bilayer model consisting of the d_{x^{2}-y^{2}} and d_{3z^{2}-r^{2}} orbitals of Ni atoms in both the pristine crystal and the crystal with apical-oxygen deficiencies. Our analysis reveals an s^{±}-wave pairing symmetry driven by spin fluctuations. The crucial role of pressure lies in that it induces the emergence of the γ pocket, which is involved in the strongest Fermi-surface nesting. We further found the emergence of local moments in the vicinity of apical-oxygen deficiencies, which significantly suppresses the T_{c}. Therefore, it is possible to significantly enhance the T_{c} by eliminating oxygen deficiencies during the synthesis of the samples.

11.
Analyst ; 148(21): 5435-5444, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37750326

ABSTRACT

We developed a highly sensitive and stable SERS-active substrate of Au@Ag@Ag core/shell/shell nanorods, formed by encapsulating Au nanorods (Au NRs) into a bilayer silver shell with Raman reporter molecules (4-mercaptobenzoic acid (4-MBA) and thiram) in the shell-shell gap. The core/shell/shell nanostructures demonstrated a high SERS enhancement and easy assembly. The important role of the bilayer silver shell in boosting the SERS intensity and detection sensitivity was revealed by comparing the performances of the Au@Ag@4-MBA@Ag NRs, Au@Ag@4-MBA NRs, and Au@4-MBA NRs. The obtained Au@Ag@4-MBA@Ag NRs exhibited a significantly promoted SERS intensity, which could reach around 2.6 times and 240 times that of the Au@Ag@4-MBA NRs and Au@4-MBA NRs, where the enhancement factor was found to be strongly correlated with the shell thickness. The controllable plasma properties and SERS effect of the Au@Ag@4-MBA@Ag NRs could be optimized by adjusting the dose of silver nitrate. The SERS substrate comprising core/shell/shell nanorods was highly reproducible and stable (retaining 83% SERS intensity after one month). Moreover, the highly sensitive detection of the pesticide thiram with a detection limit as low as 1.74 × 10-9 M was achieved by taking advantage of the great SERS response of the core/shell/shell nanostructures, which was 1-2 orders of magnitude lower than for other SERS substrates. The developed SERS substrate could be readily extended to embed other target analytes into the core/shell/shell nanostructure for novel and sensitive detection. This study could enable fresh approaches toward next-generation ultrasensitive analyte detection.

12.
Environ Sci Technol ; 57(45): 17256-17265, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37921462

ABSTRACT

Dysprosium (Dy) is increasingly being adopted in various clean energy products around the world, intriguing many nations' interests in its availability. However, since data are inaccessible, crucial information about Dy supplies and demands across products and countries remains incomplete. To fill these knowledge gaps, we performed a dynamic bottom-up material flow analysis of Dy, taking the United States (1987-2018) as a case. The results show that the United States (US) domestic demands experienced a growing trend (by 45-fold) with fluctuation and several shifts among applications, primarily owing to technological advancement. A large imbalance (80 times) exists between domestic mineral supplies and market demands, resulting in significant import dependency, with the net import reliance of alloys, chemicals, finished products, and concentrates being 97, 44, 40, and 31%, respectively. Dy is mainly imported as finished products (55.7%) and alloys (43.2%), with concentrates (0.4%) and chemicals (0.7%) accounting for less than 2%. This import dependency may result from fragmentation of the US supply chains because of the stricter environmental regulations on upstream industries and reshoring of the downstream industries. These findings suggest that rare-earth mineral production in the US is about to restart, and it is important for industries to seek international collaboration to boost product competition.


Subject(s)
Dysprosium , Metals, Rare Earth , United States , Industry , Alloys , Minerals
13.
Environ Sci Technol ; 57(38): 14113-14126, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37709662

ABSTRACT

Some key low-carbon technologies, ranging from wind turbines to electric vehicles, are underpinned by the strong rare-earth-based permanent magnets of the Nd, Pr (Dy)-Fe-Nb type (NdFeB). These NdFeB magnets, which are sensitive to demagnetization with temperature elevation (the Curie point), require the addition of variable amounts of dysprosium (Dy), where an elevation of the Curie point is needed to meet operational conditions. Given that China is the world's largest REE supplier with abundant REE reserves, the impact of an ambitious 1.5 °C climate target on China's Dy supply chain has sparked widespread concern. Here, we explore future trends and innovation strategies associated with the linkage between Dy and NdFeBs under various climate scenarios in China. We find China alone is expected to exhaust the global present Dy reserve within the next 2-3 decades to facilitate the 1.5 °C climate target. By implementing global available innovation strategies, such as material substitution, reduction, and recycling, it is possible to avoid 48%-68% of China's cumulative demand for Dy. Nevertheless, ongoing efforts in REE exploration and production are still required to meet China's growing Dy demand, which will face competition from the United States, European Union, and other countries with ambitious climate targets. Thus, our analysis urges China and those nations to form wider cooperation in REE supply chains as well as in NdFeB innovation for the realization of a global climate-safe future.


Subject(s)
Dysprosium , Metals, Rare Earth , Climate , Magnets , China
14.
Neurol Sci ; 44(10): 3675-3678, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37566197

ABSTRACT

RDD involving the central nervous system is rarely reported. To better understand the disease and explore the treatments, we reported this case and review the literature.


Subject(s)
Histiocytosis, Sinus , Humans , Histiocytosis, Sinus/diagnosis , Histiocytosis, Sinus/diagnostic imaging , Central Nervous System
15.
Appl Opt ; 62(30): 7960-7965, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-38038088

ABSTRACT

We report on a low dark current density P-B-i-N extended short-wavelength infrared photodetector with atomic layer deposited (ALD) A l 2 O 3 passivation based on a InAs/GaSb/AlSb superlattice. The dark current density of the A l 2 O 3 passivated device was reduced by 38% compared to the unpassivated device. The cutoff wavelength of the photodetector is 1.8 µm at 300 K. The photodetector exhibited a room-temperature (300 K) peak responsivity of 0.44 A/W at 1.52 µm, corresponding to a quantum efficiency of 35.8%. The photodetector exhibited a specific detectivity (D ∗) of 1.08×1011 c m⋅H z 1/2/W with a low dark current density of 3.4×10-5 A/c m 2 under -50m v bias at 300 K. The low dark current density A l 2 O 3 passivated device is expected to be used in the fabrication of extended short-wavelength infrared focal plane arrays for imaging.

16.
Aging Clin Exp Res ; 35(11): 2603-2611, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37656411

ABSTRACT

BACKGROUND: Systemic inflammatory response syndrome (SIRS) greatly affects postoperative lives of afflicted aged patients. This study aimed to determine whether preoperative high hs-CRP/HDL ratio (CHR) was associated with an increased risk of postoperative SIRS in the elderly population. METHODS: This retrospective cohort study included data on patients aged ≥ 65 years who underwent general anesthesia surgery at two clinical centers between January 2015 and September 2020. The primary exposure was preoperative CHR which was divided into two groups (≤ 12.82 and > 12.82) based on its normal range in our hospital, and the primary outcome was the incidence of postoperative SIRS. Targeted maximum likelihood estimation analyses were used to model the exposure-outcome relationship. RESULTS: The analysis included 5595 elderly patients, of whom 1410 (25.20%) developed SIRS within three postoperative days. Targeted maximum likelihood estimation analysis revealed that elderly patients with CHR > 12.82 vs. CHR ≤ 12.82 was associated with increased risk of postoperative SIRS (aOR = 1.40, 95% CI [1.33, 1.48], P < 0.001). Those results were consistent both in subgroup analyses and sensitivity analyses. Compared with patients with CHR ≤ 12.82, patients with CHR > 12.82 had a higher prevalence of postoperative SIRS (49.06% vs. 22.70%), postoperative in-hospital mortality (3.40% vs. 0.65%), a longer hospital stay after surgery [10 (IQR, 6-16) vs. 8 (IQR, 5-11) days] and higher direct medical cost [10070 (IQR, 6878-15577) vs. 7117 (IQR, 4079-10314) euros, all P < 0.001]. CONCLUSIONS: In elderly patients, preoperative CHR > 12.82 was significantly associated with a higher risk of postoperative SIRS.


Subject(s)
C-Reactive Protein , Systemic Inflammatory Response Syndrome , Humans , Aged , Systemic Inflammatory Response Syndrome/epidemiology , Systemic Inflammatory Response Syndrome/etiology , C-Reactive Protein/analysis , Retrospective Studies , Postoperative Complications/etiology , Incidence
17.
Int J Mol Sci ; 24(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37239992

ABSTRACT

The pathogenesis of microbial infections and sepsis is partly attributable to dysregulated innate immune responses propagated by late-acting proinflammatory mediators such as procathepsin L (pCTS-L). It was previously not known whether any natural product could inhibit pCTS-L-mediated inflammation or could be strategically developed into a potential sepsis therapy. Here, we report that systemic screening of a NatProduct Collection of 800 natural products led to the identification of a lipophilic sterol, lanosterol (LAN), as a selective inhibitor of pCTS-L-induced production of cytokines [e.g., Tumor Necrosis Factor (TNF) and Interleukin-6 (IL-6)] and chemokines [e.g., Monocyte Chemoattractant Protein-1 (MCP-1) and Epithelial Neutrophil-Activating Peptide (ENA-78)] in innate immune cells. To improve its bioavailability, we generated LAN-carrying liposome nanoparticles and found that these LAN-containing liposomes (LAN-L) similarly inhibited pCTS-L-induced production of several chemokines [e.g., MCP-1, Regulated upon Activation, Normal T Cell Expressed and Presumably Secreted (RANTES) and Macrophage Inflammatory Protein-2 (MIP-2)] in human blood mononuclear cells (PBMCs). In vivo, these LAN-carrying liposomes effectively rescued mice from lethal sepsis even when the first dose was given at 24 h post the onset of this disease. This protection was associated with a significant attenuation of sepsis-induced tissue injury and systemic accumulation of serval surrogate biomarkers [e.g., IL-6, Keratinocyte-derived Chemokine (KC), and Soluble Tumor Necrosis Factor Receptor I (sTNFRI)]. These findings support an exciting possibility to develop liposome nanoparticles carrying anti-inflammatory sterols as potential therapies for human sepsis and other inflammatory diseases.


Subject(s)
Liposomes , Sepsis , Mice , Humans , Animals , Liposomes/therapeutic use , Lanosterol/therapeutic use , Interleukin-6 , Cytokines , Chemokines , Sepsis/pathology
18.
J Environ Manage ; 342: 118178, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37196612

ABSTRACT

There has been growing concern among the public over the environmental impacts of the copper (Cu) mining and mineral processing industries. As an effective tool enabling interactions of all energy and material flows with the environment, Life Cycle Assessment (LCA) is used in many countries to identify environmental hotspots associated with operations, based on which improvements can be made. However, robust LCA research in this sector is lacking in China. This study aimed to fill this critical gap by investigating two typical Cu mining and mineral processing operations using different mining technologies, based on globally harmonized LCA methodologies. The results of the overall environmental impacts were obtained using a sensitivity analysis. Electricity (38%-74%), diesel (8%-24%) and explosives (4%-22%) were identified as the three main controlling factors. At the same time, the mineral processing stage was found to be the major production stage (60%-79%), followed by the mining stage (17%-39%) and the wastewater treatment (1%-13%). Global Warming Potential (GWP) was prioritized as the most important environmental issue (59%) across the selected impact categories. In addition, it was initially found that underground mining technology has better environmental performance than open-pit technology. Finally, the potential for improvement was estimated and discussed for the three identified controlling factors. Using GWP as an example, using green electricity can effectively reduce CO2 emissions by 47%-67%, whereas replacing diesel and explosives with cleaner fuels and explosives may contribute to lower CO2 emissions by 6% and 9%, respectively.


Subject(s)
Copper , Explosive Agents , Carbon Dioxide , Environment , Mining , Minerals
19.
J Environ Manage ; 344: 118494, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37418921

ABSTRACT

Combining organic and inorganic fertilizer applications can help reduce inorganic fertilizer use and increase soil fertility. However, the most suitable proportion of organic fertilizer is unknown, and the effect of combining organic and inorganic fertilizers on greenhouse gas (GHG) emissions is inconclusive. This study aimed to identify the optimum ratio of inorganic fertilizer to organic fertilizer in a winter wheat-summer maize cropping system in northern China to achieve high grain yields and low GHG intensities. The study compared six fertilizer treatments: no fertilization (CK), conventional inorganic fertilization (NP), and constant total nitrogen input with 25% (25%OF), 50% (50%OF), 75% (75%OF), or 100% (100%OF) organic fertilizer. The results showed that the 75%OF treatment increased the winter wheat and summer maize yields the most, by 7.2-25.1% and 15.3-16.7%, respectively, compared to NP. The 75%OF and 100%OF treatments had the lowest nitrous oxide (N2O) emissions, 187.3% and 200.2% lower than the NP treatment, while all fertilizer treatments decreased methane (CH4) absorption (by 33.1-82.0%) compared to CK. Carbon dioxide flux increased in the summer maize growing season (by 7.7-30.5%) compared to CK but did not significantly differ between fertilizer treatments. The average global warming potential (GWP) rankings across two wheat-maize rotations were NP > 50%OF > 25%OF > 100%OF > 75%OF > CK, and greenhouse gas intensity (GHGI) rankings were NP > 25%OF > 50%OF > 100%OF > 75%OF > CK. We recommend using 75% organic fertilizer/25% inorganic fertilizer to reduce GHG emissions and ensure high crop yields in wheat-maize rotation systems in northern China.


Subject(s)
Greenhouse Gases , Greenhouse Gases/analysis , Fertilizers , Agriculture/methods , Triticum , Zea mays , Soil , Nitrogen , China , Nitrous Oxide/analysis , Methane/analysis
20.
Resour Conserv Recycl ; 190: 106800, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36465718

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has significantly disrupted global metal mining and associated supply chains. Here we analyse the cascading effects of the metal mining disruption associated with the COVID-19 pandemic on the economy, climate change, and human health. We find that the pandemic reduced global metal mining by 10-20% in 2020. This reduction subsequently led to losses in global economic output of approximately 117 billion US dollars, reduced CO2 emissions by approximately 33 million tonnes (exceeding Hungary's emissions in 2015), and reduced human health damage by 78,192 disability-adjusted life years. In particular, copper and iron mining made the most significant contribution to these effects. China and rest-of-the-world America were the most affected. The cascading effects of the metal mining disruption associated with the pandemic on the economy, climate change, and human health should be simultaneously considered in designing green economic stimulus policies.

SELECTION OF CITATIONS
SEARCH DETAIL