Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Nature ; 630(8016): 346-352, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811731

ABSTRACT

Vertical three-dimensional integration of two-dimensional (2D) semiconductors holds great promise, as it offers the possibility to scale up logic layers in the z axis1-3. Indeed, vertical complementary field-effect transistors (CFETs) built with such mixed-dimensional heterostructures4,5, as well as hetero-2D layers with different carrier types6-8, have been demonstrated recently. However, so far, the lack of a controllable doping scheme (especially p-doped WSe2 (refs. 9-17) and MoS2 (refs. 11,18-28)) in 2D semiconductors, preferably in a stable and non-destructive manner, has greatly impeded the bottom-up scaling of complementary logic circuitries. Here we show that, by bringing transition metal dichalcogenides, such as MoS2, atop a van der Waals (vdW) antiferromagnetic insulator chromium oxychloride (CrOCl), the carrier polarity in MoS2 can be readily reconfigured from n- to p-type via strong vdW interfacial coupling. The consequential band alignment yields transistors with room-temperature hole mobilities up to approximately 425 cm2 V-1 s-1, on/off ratios reaching 106 and air-stable performance for over one year. Based on this approach, vertically constructed complementary logic, including inverters with 6 vdW layers, NANDs with 14 vdW layers and SRAMs with 14 vdW layers, are further demonstrated. Our findings of polarity-engineered p- and n-type 2D semiconductor channels with and without vdW intercalation are robust and universal to various materials and thus may throw light on future three-dimensional vertically integrated circuits based on 2D logic gates.

2.
Nature ; 622(7983): 499-506, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37704732

ABSTRACT

Solar steam interfacial evaporation represents a promising strategy for seawater desalination and wastewater purification owing to its environmentally friendly character1-3. To improve the solar-to-steam generation, most previous efforts have focused on effectively harvesting solar energy over the full solar spectrum4-7. However, the importance of tuning joint densities of states in enhancing solar absorption of photothermal materials is less emphasized. Here we propose a route to greatly elevate joint densities of states by introducing a flat-band electronic structure. Our study reveals that metallic λ-Ti3O5 powders show a high solar absorptivity of 96.4% due to Ti-Ti dimer-induced flat bands around the Fermi level. By incorporating them into three-dimensional porous hydrogel-based evaporators with a conical cavity, an unprecedentedly high evaporation rate of roughly 6.09 kilograms per square metre per hour is achieved for 3.5 weight percent saline water under 1 sun of irradiation without salt precipitation. Fundamentally, the Ti-Ti dimers and U-shaped groove structure exposed on the λ-Ti3O5 surface facilitate the dissociation of adsorbed water molecules and benefit the interfacial water evaporation in the form of small clusters. The present work highlights the crucial roles of Ti-Ti dimer-induced flat bands in enchaining solar absorption and peculiar U-shaped grooves in promoting water dissociation, offering insights into access to cost-effective solar-to-steam generation.

3.
Proc Natl Acad Sci U S A ; 121(8): e2313840121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38354259

ABSTRACT

Recent studies have reported the experimental discovery that nanoscale specimens of even a natural material, such as diamond, can be deformed elastically to as much as 10% tensile elastic strain at room temperature without the onset of permanent damage or fracture. Computational work combining ab initio calculations and machine learning (ML) algorithms has further demonstrated that the bandgap of diamond can be altered significantly purely by reversible elastic straining. These findings open up unprecedented possibilities for designing materials and devices with extreme physical properties and performance characteristics for a variety of technological applications. However, a general scientific framework to guide the design of engineering materials through such elastic strain engineering (ESE) has not yet been developed. By combining first-principles calculations with ML, we present here a general approach to map out the entire phonon stability boundary in six-dimensional strain space, which can guide the ESE of a material without phase transitions. We focus on ESE of vibrational properties, including harmonic phonon dispersions, nonlinear phonon scattering, and thermal conductivity. While the framework presented here can be applied to any material, we show as an example demonstration that the room-temperature lattice thermal conductivity of diamond can be increased by more than 100% or reduced by more than 95% purely by ESE, without triggering phonon instabilities. Such a framework opens the door for tailoring of thermal-barrier, thermoelectric, and electro-optical properties of materials and devices through the purposeful design of homogeneous or inhomogeneous strains.

4.
Nature ; 576(7785): 85-90, 2019 12.
Article in English | MEDLINE | ID: mdl-31723266

ABSTRACT

Thermoelectric materials transform a thermal gradient into electricity. The efficiency of this process relies on three material-dependent parameters: the Seebeck coefficient, the electrical resistivity and the thermal conductivity, summarized in the thermoelectric figure of merit. A large figure of merit is beneficial for potential applications such as thermoelectric generators. Here we report the thermal and electronic properties of thin-film Heusler alloys based on Fe2V0.8W0.2Al prepared by magnetron sputtering. Density functional theory calculations suggest that the thin films are metastable states, and measurements of the power factor-the ratio of the Seebeck coefficient squared divided by the electrical resistivity-suggest a high intrinsic figure of merit for these thin films. This may arise from a large differential density of states at the Fermi level and a Weyl-like electron dispersion close to the Fermi level, which indicates a high mobility of charge carriers owing to linear crossing in the electronic bands.

5.
Nat Mater ; 21(10): 1137-1143, 2022 10.
Article in English | MEDLINE | ID: mdl-36075967

ABSTRACT

Rare earth (RE) addition to steels to produce RE steels has been widely applied when aiming to improve steel properties. However, RE steels have exhibited extremely variable mechanical performances, which has become a bottleneck in the past few decades for their production, utilization and related study. Here in this work, we discovered that the property variation of RE steels stems from the presence of oxygen-based inclusions. We proposed a dual low-oxygen technology, and keeping low levels of oxygen content in steel melts and particularly in the raw RE materials, which have long been ignored, to achieve impressively stable and favourable RE effects. The fatigue life is greatly improved by only parts-per-million-level RE addition, with a 40-fold improvement for the tension-compression fatigue life and a 40% enhancement of the rolling contact fatigue life. We find that RE appears to act by lowering the carbon diffusion rate and by retarding ferrite nucleation at the austenite grain boundaries. Our study reveals that only under very low-oxygen conditions can RE perform a vital role in purifying, modifying and micro-alloying steels, to improve the performance of RE steels.


Subject(s)
Oxygen , Steel , Alloys , Carbon
6.
Phys Rev Lett ; 130(7): 078001, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36867825

ABSTRACT

Adsorption of carbon monoxide (CO) on transition-metal surfaces is a prototypical process in surface sciences and catalysis. Despite its simplicity, it has posed great challenges to theoretical modeling. Pretty much all existing density functionals fail to accurately describe surface energies and CO adsorption site preference as well as adsorption energies simultaneously. Although the random phase approximation (RPA) cures these density functional theory failures, its large computational cost makes it prohibitive to study the CO adsorption for any but the simplest ordered cases. Here, we address these challenges by developing a machine-learned force field (MLFF) with near RPA accuracy for the prediction of coverage-dependent adsorption of CO on the Rh(111) surface through an efficient on-the-fly active learning procedure and a Δ-machine learning approach. We show that the RPA-derived MLFF is capable to accurately predict the Rh(111) surface energy and CO adsorption site preference as well as adsorption energies at different coverages that are all in good agreement with experiments. Moreover, the coverage-dependent ground-state adsorption patterns and adsorption saturation coverage are identified.

7.
Phys Rev Lett ; 131(11): 116602, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37774282

ABSTRACT

Phonons, as the most fundamental emergent bosons in condensed matter systems, play an essential role in the thermal, mechanical, and electronic properties of crystalline materials. Recently, the concept of topology has been introduced to phonon systems, and the nontrivial topological states also exist in phonons due to the constraint by the crystal symmetry of the space group. Although the classification of various topological phonons has been enriched theoretically, experimental studies were limited to several three-dimensional (3D) single crystals with inelastic x-ray or neutron scatterings. The experimental evidence of topological phonons in two-dimensional (2D) materials is absent. Here, using high-resolution electron energy loss spectroscopy following our theoretical predictions, we directly map out the phonon spectra of the atomically thin graphene in the entire 2D Brillouin zone, and observe two nodal-ring phonons and four Dirac phonons. The closed loops of nodal-ring phonons and the conical structure of Dirac phonons in 2D momentum space are clearly revealed by our measurements, in nice agreement with our theoretical calculations. The ability of 3D mapping (2D momentum space and energy space) of phonon spectra opens up a new avenue to the systematic identification of the topological phononic states. Our work lays a solid foundation for potential applications of topological phonons in superconductivity, dynamic instability, and phonon diode.

8.
Phys Chem Chem Phys ; 24(5): 3086-3093, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35040847

ABSTRACT

With the miniaturization and integration of nanoelectronic devices, efficient heat removal becomes a key factor affecting their reliable operation. Two-dimensional (2D) materials, with high intrinsic thermal conductivity, good mechanical flexibility, and precisely controllable growth, are widely accepted as ideal candidates for thermal management materials. In this work, by solving the phonon Boltzmann transport equation (BTE) based on first-principles calculations, we investigated the thermal conductivity of novel 2D layered MSi2N4 (M = Mo, W). Our results point to a competitive thermal conductivity as large as 162 W m-1 K-1 of monolayer MoSi2N4, which is around two times larger than that of WSi2N4 and seven times larger than that of monolayer MoS2 despite their similar non-planar structures. It is revealed that the high thermal conductivity arises mainly from its large group velocity and low anharmonicity. Our result suggests that MoSi2N4 could be a potential candidate for 2D thermal management materials.

9.
Nat Mater ; 18(1): 62-68, 2019 01.
Article in English | MEDLINE | ID: mdl-30455446

ABSTRACT

Inorganic chalcogenides are traditional high-performance thermoelectric materials. However, they suffer from intrinsic brittleness and it is very difficult to obtain materials with both high thermoelectric ability and good flexibility. Here, we report a flexible thermoelectric material comprising highly ordered Bi2Te3 nanocrystals anchored on a single-walled carbon nanotube (SWCNT) network, where a crystallographic relationship exists between the Bi2Te3 <[Formula: see text]> orientation and SWCNT bundle axis. This material has a power factor of ~1,600 µW m-1 K-2 at room temperature, decreasing to 1,100 µW m-1 K-2 at 473 K. With a low in-plane lattice thermal conductivity of 0.26 ± 0.03 W m-1 K-1, a maximum thermoelectric figure of merit (ZT) of 0.89 at room temperature is achieved, originating from a strong phonon scattering effect. The origin of the excellent flexibility and thermoelectric performance of the Bi2Te3-SWCNT material is attributed, by experimental and computational evidence, to its crystal orientation, interface and nanopore structure. Our results provide insight into the design and fabrication of high-performance flexible thermoelectric materials.

10.
Phys Chem Chem Phys ; 22(48): 28359-28364, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33300909

ABSTRACT

The septuple-atomic-layer VSi2P4 with the same structure of experimentally synthesized MoSi2N4 is predicted to be a spin-gapless semiconductor (SGS) with the generalized gradient approximation (GGA). In this work, the biaxial strain is applied to tune the electronic properties of VSi2P4, and it spans a wide range of properties upon increasing the strain from a ferromagnetic metal (FMM) to SGS to a ferromagnetic semiconductor (FMS) to SGS to a ferromagnetic half-metal (FMHM). Due to broken inversion symmetry, the coexistence of ferromagnetism and piezoelectricity can be achieved in FMS VSi2P4 with the strain range of 0% to 4%. The calculated piezoelectric strain coefficients d11 for 1%, 2% and 3% strains are 4.61 pm V-1, 4.94 pm V-1 and 5.27 pm V-1, respectively, which are greater than or close to a typical value of 5 pm V-1 for bulk piezoelectric materials. Finally, similar to VSi2P4, the coexistence of piezoelectricity and ferromagnetism can be realized by strain in the VSi2N4 monolayer. Our works show that VSi2P4 in the FMS phase with intrinsic piezoelectric properties can have potential applications in spin electronic devices.

11.
Phys Rev Lett ; 123(13): 136802, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31697526

ABSTRACT

Beryllium has recently been discovered to harbor a Dirac nodal line (DNL) in its bulk phase and the DNL-induced nontrivial surface states (DNSSs) on its (0001) surface, rationalizing several already-existing historic puzzles [Phys. Rev. Lett. 117, 096401 (2016)PRLTAO0031-900710.1103/PhysRevLett.117.096401]. However, to date the underlying mechanism as to why its (0001) surface exhibits an anomalously large electron-phonon coupling effect (λ_{e-ph}^{s}≈1.0) remains unresolved. Here, by means of first-principles calculations, we show that the coupling of the DNSSs with the phononic states mainly contributes to its novel surface e-ph enhancement. Besides the fact that the experimentally observed λ_{e-ph}^{s} and the main Eliashberg coupling function (ECF) peaks are reproduced well in our current calculations, we decompose the ECF α^{2}F(k,q;v) and the e-ph coupling strength λ(k,q;v) as a function of each electron momentum (k), each phonon momentum (q), and each phonon mode (v), evidencing the robust connection between the DNSSs and both α^{2}F(k,q;v) and λ(k,q;v). The results reveal the strong e-ph coupling between the DNSSs and the phonon modes, which contributes over 80% of the λ_{e-ph}^{s} coefficient on the Be (0001) surface. It highlights that the anomalously large e-ph coefficient on the Be (0001) surface can be attributed to the presence of its DNL-induced DNSSs, clarifying the long-debated mechanism.

12.
Phys Rev Lett ; 117(9): 096401, 2016 Aug 26.
Article in English | MEDLINE | ID: mdl-27610865

ABSTRACT

Beryllium is a simple alkali earth metal, but has been the target of intensive studies for decades because of its unusual electron behavior at surfaces. The puzzling aspects include (i) severe deviations from the description of the nearly free-electron picture, (ii) an anomalously large electron-phonon coupling effect, and (iii) giant Friedel oscillations. The underlying origins for such anomalous surface electron behavior have been under active debate, but with no consensus. Here, by means of first-principles calculations, we discover that this pure metal system, surprisingly, harbors the Dirac node line (DNL) that in turn helps to rationalize many of the existing puzzles. The DNL is featured by a closed line consisting of linear band crossings, and its induced topological surface band agrees well with previous photoemission spectroscopy observations on the Be (0001) surface. We further reveal that each of the elemental alkali earth metals of Mg, Ca, and Sr also harbors the DNL and speculate that the fascinating topological property of the DNL might naturally exist in other elemental metals as well.

13.
Phys Chem Chem Phys ; 17(10): 6933-47, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25679751

ABSTRACT

At P = 1 atm, the only stable compounds in the Na-Bi binary system are Na3Bi and NaBi, which have recently been discovered to exhibit intriguing electronic behaviour as a 3D topological Dirac semimetal and a topological metal, respectively. By means of first-principles calculations coupled with evolutionary structural searches, we have systematically investigated the phase stabilities, the crystal structures and the corresponding electronic properties of the binary Na-Bi system. At ambient pressure, our calculations have reproduced well the experimentally observed compositions and structures of Na3Bi and NaBi. At high pressures, we have found that Na3Bi is transformed from the ground-state hexagonal hP24 phase to a cubic cF16 phase above 0.8 GPa, confirming previous experiments, and then to a conventional band-insulating oC16 phase above 118 GPa. The cubic cF16 phase would exhibit novel topological band ordering similar to that in HgTe. The topological metal NaBi has also been found to undergo a structural phase transition from the ambient tetragonal tP2 to a cubic cP2 structure above 36 GPa. Four compounds never before reported, Na6Bi, Na4Bi, Na2Bi and NaBi2, with new compositions, have been predicted to be experimentally synthesizable over a wide range of pressures starting at 142.5 GPa, 105 GPa, 38 GPa and 171 GPa, respectively. Moreover, a common charge transfer from Na to Bi has been observed for all compounds, but substantial interstitial charge localization in Na atomic cages has been noticed only in two compounds, Na6Bi and Na4Bi, and may be associated with close-packed Na environments.

14.
Phys Chem Chem Phys ; 16(48): 26974-82, 2014 Dec 28.
Article in English | MEDLINE | ID: mdl-25380409

ABSTRACT

By means of first-principles calculations, we have systematically investigated the structural, elastic, vibrational, thermal and electronic properties of the ground-state phase for the intermetallic compound U2Mo. Our results reveal that the previously synthesized I4/mmm structure of U2Mo is a metastable phase and unstable, neither thermodynamically nor vibrationally at the ground state. In combination with the evolutionary structural searches, our first-principles calculations suggest a new ground-state Pmmn phase, which has been confirmed theoretically to be stable, both thermodynamically and vibrationally. Moreover, through the DFT + D technique we have discussed the influence of van der Waals interactions on the structural, elastic and vibrational properties, revealing a weak effect in pure U and Mo solids and U2Mo alloy. The analysis of the electronic band structures evidences its electronic stabilities with the appearance of a deep valley in the density of states at the Fermi level. Moreover, we have investigated further the temperature-dependent structural, thermal expansion and elastic properties of our proposed Pmmn ground-state phase. These results are expected to stimulate further experimental investigations of the ground-state phase of U2Mo.

15.
Phys Chem Chem Phys ; 16(30): 15866-73, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-24962459

ABSTRACT

In combination with variable-composition evolutionary algorithm calculations and first-principles calculations, we have systematically searched for all the stable compounds and their crystal structures in the extensively investigated binary Mn-B system. Our results have uncovered four viable ground-state compounds, with Mn2B, MnB, and MnB4, and previously never reported MnB3 and two metastable compounds, MnB2 and Mn3B4. Our calculations demonstrate that the early characterized mC10 structure of MnB4 showed dynamic instability with large imaginary phonon frequencies and, instead, a new mP20 structure is predicted to be stable both dynamically and thermodynamically, with a considerable energy gain and no imaginary phonon frequencies. The new MnB3 compound crystallizes in the monoclinic mC16 structure which lies 3.2 meV per atom below the MnB (oP8) ↔ MnB4 (mP20) tie-line at T = 0 K. Furthermore, these proposed phases have been verified by our annealed samples after arc-melting synthesis and corresponding powder XRD measurements.

16.
Nat Commun ; 15(1): 3079, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594273

ABSTRACT

Reconstructive phase transitions involving breaking and reconstruction of primary chemical bonds are ubiquitous and important for many technological applications. In contrast to displacive phase transitions, the dynamics of reconstructive phase transitions are usually slow due to the large energy barrier. Nevertheless, the reconstructive phase transformation from ß- to λ-Ti3O5 exhibits an ultrafast and reversible behavior. Despite extensive studies, the underlying microscopic mechanism remains unclear. Here, we discover a kinetically favorable in-plane nucleated layer-by-layer transformation mechanism through metadynamics and large-scale molecular dynamics simulations. This is enabled by developing an efficient machine learning potential with near first-principles accuracy through an on-the-fly active learning method and an advanced sampling technique. Our results reveal that the ß-λ phase transformation initiates with the formation of two-dimensional nuclei in the ab-plane and then proceeds layer-by-layer through a multistep barrier-lowering kinetic process via intermediate metastable phases. Our work not only provides important insight into the ultrafast and reversible nature of the ß-λ transition, but also presents useful strategies and methods for tackling other complex structural phase transitions.

17.
Research (Wash D C) ; 6: 0042, 2023.
Article in English | MEDLINE | ID: mdl-36930816

ABSTRACT

Two-dimensional (2D) materials have gained lots of attention due to the potential applications. In this work, we propose that based on first-principles calculations, the (2 × 2) patterned PtTe2 monolayer with kagome lattice formed by the well-ordered Te vacancy (PtTe1.75) hosts large and tunable spin Hall conductivity (SHC) and excellent hydrogen evolution reaction (HER) activity. The unconventional nature relies on the A1 @ 1b band representation of the highest valence band without spin-orbit coupling (SOC). The large SHC comes from the Rashba SOC in the noncentrosymmetric structure induced by the Te vacancy. Even though it has a metallic SOC band structure, the ℤ2 invariant is well defined because of the existence of the direct bandgap and is computed to be nontrivial. The calculated SHC is as large as 1.25 × 103 ℏ e (Ω cm)-1 at the Fermi level (EF ). By tuning the chemical potential from EF - 0.3 to EF + 0.3 eV, it varies rapidly and monotonically from -1.2 × 103 to 3.1 × 1 0 3 ℏ e Ω   cm - 1 . In addition, we also find that the Te vacancy in the patterned monolayer can induce excellent HER activity. Our results not only offer a new idea to search 2D materials with large SHC, i.e., by introducing inversion-symmetry breaking vacancies in large SOC systems, but also provide a feasible system with tunable SHC (by applying gate voltage) and excellent HER activity.

18.
Adv Mater ; 35(49): e2308090, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37813402

ABSTRACT

Simultaneous implementation of photodetector and neuromorphic vision sensor (NVS) on a single device faces a great challenge, due to the inherent speed discrepancy in their photoresponse characteristics. In this work, a trench-bridged GaN/Ga2 O3 /GaN back-to-back double heterojunction array device is fabricated to enable the advanced functionalities of both devices on a single device. Interestingly, the device shows fast photoresponse and persistent photoconductivity behavior at low and high voltages, respectively, through the modulation of oxygen vacancy ionization and de-ionization processes in Ga2 O3 . Consequently, the role of the optoelectronic device can be altered between the photodetector and NVS by simply adjusting the magnitude of bias voltage. As a photodetector, the device is able to realize fast optical imaging and optical communication functions. On the other hand, the device exhibits outstanding image sensing, image memory, and neuromorphic visual pre-processing as an NVS. The utilization of NVS for image pre-processing leads to a noticeable enhancement in both recognition accuracy and efficiency. The results presented in this work not only offer a new avenue to obtain complex functionality on a single optoelectronic device but also provide opportunities to implement advanced robotic vision systems and neuromorphic computing.

19.
Phys Rev Lett ; 108(13): 135501, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22540712

ABSTRACT

We report a general scheme to systematically construct two classes of structural families of superhard sp(3) carbon allotropes of cold-compressed graphite through the topological analysis of odd 5+7 or even 4+8 membered carbon rings stemmed from the stacking of zigzag and armchair chains. Our results show that the previously proposed M, bct-C(4), W and Z allotropes belong to our currently proposed families and that depending on the topological arrangement of the native carbon rings numerous other members are found that can help us understand the structural phase transformation of cold-compressed graphite and carbon nanotubes (CNTs). In particular, we predict the existence of two simple allotropes, R and P carbon, which match well the experimental x-ray diffraction patterns of cold-compressed graphite and CNTs, respectively, display a transparent wide-gap insulator ground state and possess a large Vickers hardness comparable to diamond.

20.
Nat Commun ; 13(1): 2034, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35440647

ABSTRACT

Refining grains to the nanoscale can greatly enhance the strength of metals. But the engineering applications of nanostructured metals are limited by their complex manufacturing technology and poor microstructural stability. Here we report a facile "Eutectoid element alloying→ Quenching→ Hot deformation" (EQD) strategy, which enables the mass production of a Ti6Al4V5Cu (wt.%) alloy with α-Ti grain size of 95 ± 32 nm. In addition, rapid co-precipitation of Ti2Cu and ß phases forms a "dual-phase honeycomb shell" (DPHS) structure along the grain boundaries and effectively stabilizes the α-grains. The instability temperature of the nanostructured Ti6Al4V5Cu alloy reaches 973 K (0.55Tm). The room temperature tensile strength approaches 1.52 ± 0.03 GPa, which is 60% higher than the Ti6Al4V counterpart without sacrificing its ductility. Furthermore, the tensile elongation at 923 K exceeds 1000%. The aforementioned strategy paves a new pathway to develop manufacture-friendly nanostructured materials and it also has great potential for application in other alloy systems.

SELECTION OF CITATIONS
SEARCH DETAIL