Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Cell ; 179(5): 1057-1067.e14, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31730849

ABSTRACT

The transition to a terrestrial environment, termed terrestrialization, is generally regarded as a pivotal event in the evolution and diversification of the land plant flora that changed the surface of our planet. Through phylogenomic studies, a group of streptophyte algae, the Zygnematophyceae, have recently been recognized as the likely sister group to land plants (embryophytes). Here, we report genome sequences and analyses of two early diverging Zygnematophyceae (Spirogloea muscicola gen. nov. and Mesotaenium endlicherianum) that share the same subaerial/terrestrial habitat with the earliest-diverging embryophytes, the bryophytes. We provide evidence that genes (i.e., GRAS and PYR/PYL/RCAR) that increase resistance to biotic and abiotic stresses in land plants, in particular desiccation, originated or expanded in the common ancestor of Zygnematophyceae and embryophytes, and were gained by horizontal gene transfer (HGT) from soil bacteria. These two Zygnematophyceae genomes represent a cornerstone for future studies to understand the underlying molecular mechanism and process of plant terrestrialization.


Subject(s)
Biological Evolution , Embryophyta/genetics , Genome, Plant , Streptophyta/genetics , Abscisic Acid/pharmacology , Amino Acid Sequence , Multigene Family , Phylogeny , Plant Proteins/chemistry , Protein Domains , Streptophyta/classification , Symbiosis/genetics , Synteny/genetics
2.
Nature ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885696

ABSTRACT

Harnessing genetic diversity in major staple crops through the development of new breeding capabilities is essential to ensure food security1. Here we examined the genetic and phenotypic diversity of the A.E. Watkins landrace collection2 of bread wheat (Triticum aestivum), a major global cereal, through whole-genome re-sequencing (827 Watkins landraces and 208 modern cultivars) and in-depth field evaluation spanning a decade. We discovered that modern cultivars are derived from just two of the seven ancestral groups of wheat and maintain very long-range haplotype integrity. The remaining five groups represent untapped genetic sources, providing access to landrace-specific alleles and haplotypes for breeding. Linkage disequilibrium (LD) based haplotypes and association genetics analyses link Watkins genomes to the thousands of high-resolution quantitative trait loci (QTL), and significant marker-trait associations identified. Using these structured germplasm, genotyping and informatics resources, we revealed many Watkins-unique beneficial haplotypes that can confer superior traits in modern wheat. Furthermore, we assessed the phenotypic effects of 44,338 Watkins-unique haplotypes, introgressed from 143 prioritised QTL in the context of modern cultivars, bridging the gap between landrace diversity and current breeding. This study establishes a framework for systematically utilising genetic diversity in crop improvement to achieve sustainable food security.

3.
Plant Biotechnol J ; 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520342

ABSTRACT

High-throughput genotyping arrays have provided a cost-effective, reliable and interoperable system for genotyping hexaploid wheat and its relatives. Existing, highly cited arrays including our 35K Wheat Breeder's array and the Illumina 90K array were designed based on a limited amount of varietal sequence diversity and with imperfect knowledge of SNP positions. Recent progress in wheat sequencing has given us access to a vast pool of SNP diversity, whilst technological improvements have allowed us to fit significantly more probes onto a 384-well format Axiom array than previously possible. Here we describe a novel Axiom genotyping array, the 'Triticum aestivum Next Generation' array (TaNG), largely derived from whole genome skim sequencing of 204 elite wheat lines and 111 wheat landraces taken from the Watkins 'Core Collection'. We used a novel haplotype optimization approach to select SNPs with the highest combined varietal discrimination and a design iteration step to test and replace SNPs which failed to convert to reliable markers. The final design with 43 372 SNPs contains a combination of haplotype-optimized novel SNPs and legacy cross-platform markers. We show that this design has an improved distribution of SNPs compared to previous arrays and can be used to generate genetic maps with a significantly higher number of distinct bins than our previous array. We also demonstrate the improved performance of TaNGv1.1 for Genome-wide association studies (GWAS) and its utility for Copy Number Variation (CNV) analysis. The array is commercially available with supporting marker annotations and initial genotyping results freely available.

4.
Brief Bioinform ; 23(4)2022 07 18.
Article in English | MEDLINE | ID: mdl-35698834

ABSTRACT

Accurate prediction of open reading frames (ORFs) is important for studying and using genome sequences. Ribosomes move along mRNA strands with a step of three nucleotides and datasets carrying this information can be used to predict ORFs. The ribosome-protected footprints (RPFs) feature a significant 3-nt periodicity on mRNAs and are powerful in predicting translating ORFs, including small ORFs (sORFs), but the application of RPFs is limited because they are too short to be accurately mapped in complex genomes. In this study, we found a significant 3-nt periodicity in the datasets of populational genomic variants in coding sequences, in which the nucleotide diversity increases every three nucleotides. We suggest that this feature can be used to predict ORFs and develop the Python package 'OrfPP', which recovers ~83% of the annotated ORFs in the tested genomes on average, independent of the population sizes and the complexity of the genomes. The novel ORFs, including sORFs, identified from single-nucleotide polymorphisms are supported by protein mass spectrometry evidence comparable to that of the annotated ORFs. The application of OrfPP to tetraploid cotton and hexaploid wheat genomes successfully identified 76.17% and 87.43% of the annotated ORFs in the genomes, respectively, as well as 4704 sORFs, including 1182 upstream and 2110 downstream ORFs in cotton and 5025 sORFs, including 232 upstream and 234 downstream ORFs in wheat. Overall, we propose an alternative and supplementary approach for ORF prediction that can extend the studies of sORFs to more complex genomes.


Subject(s)
Ribosomes , Genome , Open Reading Frames , Ribosomes/genetics , Ribosomes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Polymorphism, Single Nucleotide
5.
Plant Physiol ; 191(1): 233-251, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36200882

ABSTRACT

Flaveria is a leading model for C4 plant evolution due to the presence of a dozen C3-C4 intermediate species, many of which are associated with a phylogenetic complex centered around Flaveria linearis. To investigate C4 evolution in Flaveria, we updated the Flaveria phylogeny and evaluated gas exchange, starch δ13C, and activity of C4 cycle enzymes in 19 Flaveria species and 28 populations within the F. linearis complex. A principal component analysis identified six functional clusters: (1) C3, (2) sub-C2, (3) full C2, (4) enriched C2, (5) sub-C4, and (6) fully C4 species. The sub-C2 species lacked a functional C4 cycle, while a gradient was present in the C2 clusters from little to modest C4 cycle activity as indicated by δ13C and enzyme activities. Three Yucatan populations of F. linearis had photosynthetic CO2 compensation points equivalent to C4 plants but showed little evidence for an enhanced C4 cycle, indicating they have an optimized C2 pathway that recaptures all photorespired CO2 in the bundle sheath (BS) tissue. All C2 species had enhanced aspartate aminotransferase activity relative to C3 species and most had enhanced alanine aminotransferase activity. These aminotransferases form aspartate and alanine from glutamate and in doing so could help return photorespiratory nitrogen (N) from BS to mesophyll cells, preventing glutamate feedback onto photorespiratory N assimilation. Their use requires upregulation of parts of the C4 metabolic cycle to generate carbon skeletons to sustain N return to the mesophyll, and thus could facilitate the evolution of the full C4 photosynthetic pathway.


Subject(s)
Asteraceae , Flaveria , Flaveria/genetics , Flaveria/metabolism , Phylogeny , Asteraceae/metabolism , Carbon Dioxide/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Photosynthesis/genetics , Plants/metabolism
6.
Curr Issues Mol Biol ; 43(2): 965-977, 2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34449534

ABSTRACT

Bread wheat is an essential crop with the second-highest global production after maize. Currently, wheat diseases are a serious threat to wheat production. Therefore, efficient breeding for disease resistance is extremely urgent in modern wheat. Here, we identified 2012 NLR genes from hexaploid wheat, and Ks values of paired syntenic NLRs showed a significant peak at 3.1-6.3 MYA, which exactly coincided with the first hybridization event between A and B genome lineages at ~5.5 MYA. We provided a landscape of dynamic diversity of NLRs from Triticum and Aegilops and found that NLR genes have higher diversity in wild progenitors and relatives. Further, most NLRs had opposite diversity patterns between genic and 2 Kb-promoter regions, which might respectively link sub/neofunctionalization and loss of duplicated NLR genes. Additionally, we identified an alien introgression of chromosome 4A in tetraploid emmer wheat, which was similar to that in hexaploid wheat. Transcriptome data from four experiments of wheat disease resistance helped to profile the expression pattern of NLR genes and identified promising NLRs involved in broad-spectrum disease resistance. Our study provided insights into the diversity evolution of NLR genes and identified beneficial NLRs to deploy into modern wheat in future wheat disease-resistance breeding.


Subject(s)
Disease Resistance/genetics , NLR Proteins/metabolism , Plant Diseases/immunology , Plant Proteins/metabolism , Triticum/genetics , Disease Resistance/immunology , Genome, Plant , NLR Proteins/genetics , Plant Breeding/methods , Plant Diseases/microbiology , Plant Proteins/genetics , Transcriptome , Triticum/immunology , Triticum/metabolism
7.
Am J Bot ; 107(12): 1736-1748, 2020 12.
Article in English | MEDLINE | ID: mdl-33280088

ABSTRACT

PREMISE: Large disjunctions in species distributions provide excellent opportunities to study processes that shape biogeographic patterns. One such disjunction is the eastern Asia-eastern North America (EA-ENA) floristic disjunction. For many genera with this disjunction, species richness is greater in EA than in ENA; this pattern has been attributed, in part, to higher rates of molecular evolution and speciation in EA. Longer branch lengths have been found in some EA clades, relative to their ENA sister clades, suggesting that the EA lineages have evolved at a higher rate, possibly due to environmental heterogeneity, potentially contributing to the species richness anomaly. METHODS: To evaluate whether rates of molecular evolution are elevated in EA relative to ENA, we used transcriptomes from species in 11 genera displaying this disjunction. Rates of molecular evolution were estimated for up to 385 orthologous nuclear loci per genus. RESULTS: No statistically significant differences were identified in pairwise comparisons between EA and ENA sister species, suggesting equal rates of molecular evolution for both species; the data also suggest similar selection pressures in both regions. For larger genera, evidence likewise argues against more species-rich clades having higher molecular evolutionary rates, regardless of region. Our results suggest that genes across multiple gene ontology categories are evolving at similar rates under purifying selection in species in both regions. CONCLUSIONS: Our data support the hypothesis that greater species richness in EA than ENA is due to factors other than an overall increase in rates of molecular evolution in EA.


Subject(s)
Evolution, Molecular , Transcriptome , Asia , Asia, Eastern , North America , Phylogeny
8.
BMC Genomics ; 20(1): 903, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31775624

ABSTRACT

BACKGROUND: The Mongolian gerbil (Meriones unguiculatus) has historically been used as a model organism for the auditory and visual systems, stroke/ischemia, epilepsy and aging related research since 1935 when laboratory gerbils were separated from their wild counterparts. In this study we report genome sequencing, assembly, and annotation further supported by transcriptome sequencing and assembly from 27 different tissues samples. RESULTS: The genome was sequenced using Illumina HiSeq 2000 and after assembly resulted in a final genome size of 2.54 Gbp with contig and scaffold N50 values of 31.4 Kbp and 500.0 Kbp, respectively. Based on the k-mer estimated genome size of 2.48 Gbp, the assembly appears to be complete. The genome annotation was supported by transcriptome data that identified 31,769 (> 2000 bp) predicted protein-coding genes across 27 tissue samples. A BUSCO search of 3023 mammalian groups resulted in 86% of curated single copy orthologs present among predicted genes, indicating a high level of completeness of the genome. CONCLUSIONS: We report the first de novo assembly of the Mongolian gerbil genome enhanced by assembly of transcriptome data from several tissues. Sequencing of this genome and transcriptome increases the utility of the gerbil as a model organism, opening the availability of now widely used genetic tools.


Subject(s)
Computational Biology , Genome , Genomics , Gerbillinae/genetics , High-Throughput Nucleotide Sequencing , Transcriptome , Animals , Computational Biology/methods , Gene Expression Profiling/methods , Genomics/methods , Molecular Sequence Annotation , Organ Specificity
9.
Planta ; 250(3): 989-1003, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31073657

ABSTRACT

MAIN CONCLUSION: The African Orphan Crops Consortium (AOCC) successfully initiated the ambitious genome sequencing project of 101 African orphan crops/trees with 6 genomes sequenced, 6 near completion, and 20 currently in progress. Addressing stunting, malnutrition, and hidden hunger through nutritious, economic, and resilient agri-food system is one of the major agricultural challenges of this century. As sub-Saharan Africa harbors a large portion of the severely malnourished population, the African Orphan Crops Consortium (AOCC) was established in 2011 with an aim to reduce stunting and malnutrition by providing nutritional security through improving locally adapted nutritious, but neglected, under-researched or orphan African food crops. Foods from these indigenous or naturalized crops and trees are rich in minerals, vitamins, and antioxidant, and are an integral part of the dietary portfolio and cultural, social, and economic milieu of African farmers. Through stakeholder consultations supported by the African Union, 101 African orphan and under-researched crop species were prioritized to mainstream into African agri-food systems. The AOCC, through a network of international-regional-public-private partnerships and collaborations, is generating genomic resources of three types, i.e., reference genome sequence, transcriptome sequence, and re-sequencing 100 accessions/species, using next-generation sequencing (NGS) technology. Furthermore, the University of California Davis African Plant Breeding Academy under the AOCC banner is training 150 lead African scientists to breed high yielding, nutritious, and climate-resilient (biotic and abiotic stress tolerant) crop varieties that meet African farmer and consumer needs. To date, one or more forms of sequence data have been produced for 60 crops. Reference genome sequences for six species have already been published, 6 are almost near completion, and 19 are in progress.


Subject(s)
Crop Production , Crops, Agricultural/genetics , Genome, Plant/genetics , Africa South of the Sahara , Crop Production/organization & administration , Crops, Agricultural/growth & development , Forestry , Genomics/methods , Genomics/organization & administration , High-Throughput Nucleotide Sequencing/methods , Trees/genetics , Trees/growth & development
11.
New Phytol ; 217(1): 453-466, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29084347

ABSTRACT

Dinitrogen fixation by Nostoc azollae residing in specialized leaf pockets supports prolific growth of the floating fern Azolla filiculoides. To evaluate contributions by further microorganisms, the A. filiculoides microbiome and nitrogen metabolism in bacteria persistently associated with Azolla ferns were characterized. A metagenomic approach was taken complemented by detection of N2 O released and nitrogen isotope determinations of fern biomass. Ribosomal RNA genes in sequenced DNA of natural ferns, their enriched leaf pockets and water filtrate from the surrounding ditch established that bacteria of A. filiculoides differed entirely from surrounding water and revealed species of the order Rhizobiales. Analyses of seven cultivated Azolla species confirmed persistent association with Rhizobiales. Two distinct nearly full-length Rhizobiales genomes were identified in leaf-pocket-enriched samples from ditch grown A. filiculoides. Their annotation revealed genes for denitrification but not N2 -fixation. 15 N2 incorporation was active in ferns with N. azollae but not in ferns without. N2 O was not detectably released from surface-sterilized ferns with the Rhizobiales. N2 -fixing N. azollae, we conclude, dominated the microbiome of Azolla ferns. The persistent but less abundant heterotrophic Rhizobiales bacteria possibly contributed to lowering O2 levels in leaf pockets but did not release detectable amounts of the strong greenhouse gas N2 O.


Subject(s)
Alphaproteobacteria/physiology , Ferns/microbiology , Nitrogen/metabolism , Nostoc/physiology , Oxygen/metabolism , Alphaproteobacteria/genetics , Alphaproteobacteria/isolation & purification , Biomass , Denitrification , Endophytes , Ferns/growth & development , Metagenome , Microbiota , Nitrogen Fixation , Nitrogen Isotopes/analysis , Nostoc/genetics , Nostoc/isolation & purification , Plant Leaves/growth & development , Plant Leaves/microbiology , Water , Water Microbiology
12.
Plant J ; 85(4): 532-47, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26764122

ABSTRACT

The pentatricopeptide repeat (PPR) proteins form one of the largest protein families in land plants. They are characterised by tandem 30-40 amino acid motifs that form an extended binding surface capable of sequence-specific recognition of RNA strands. Almost all of them are post-translationally targeted to plastids and mitochondria, where they play important roles in post-transcriptional processes including splicing, RNA editing and the initiation of translation. A code describing how PPR proteins recognise their RNA targets promises to accelerate research on these proteins, but making use of this code requires accurate definition and annotation of all of the various nucleotide-binding motifs in each protein. We have used a structural modelling approach to define 10 different variants of the PPR motif found in plant proteins, in addition to the putative deaminase motif that is found at the C-terminus of many RNA-editing factors. We show that the super-helical RNA-binding surface of RNA-editing factors is potentially longer than previously recognised. We used the redefined motifs to develop accurate and consistent annotations of PPR sequences from 109 genomes. We report a high error rate in PPR gene models in many public plant proteomes, due to gene fusions and insertions of spurious introns. These consistently annotated datasets across a wide range of species are valuable resources for future comparative genomics studies, and an essential pre-requisite for accurate large-scale computational predictions of PPR targets. We have created a web portal (http://www.plantppr.com) that provides open access to these resources for the community.


Subject(s)
Embryophyta/genetics , Models, Structural , Plant Proteins/chemistry , RNA Editing/genetics , Amino Acid Motifs , Amino Acid Sequence , Embryophyta/metabolism , Mitochondria/metabolism , Models, Molecular , Molecular Sequence Annotation , Plant Proteins/genetics , Plant Proteins/metabolism , Plastids/metabolism , Protein Transport , RNA Recognition Motif Proteins/chemistry , RNA Recognition Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , RNA, Plant/genetics , Sequence Alignment
13.
Nature ; 475(7355): 189-95, 2011 Jul 10.
Article in English | MEDLINE | ID: mdl-21743474

ABSTRACT

Potato (Solanum tuberosum L.) is the world's most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression. Here we use a homozygous doubled-monoploid potato clone to sequence and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade. We also sequenced a heterozygous diploid clone and show that gene presence/absence variants and other potentially deleterious mutations occur frequently and are a likely cause of inbreeding depression. Gene family expansion, tissue-specific expression and recruitment of genes to new pathways contributed to the evolution of tuber development. The potato genome sequence provides a platform for genetic improvement of this vital crop.


Subject(s)
Genome, Plant/genetics , Genomics , Solanum tuberosum/genetics , Evolution, Molecular , Gene Duplication , Gene Expression Regulation, Plant , Genes, Plant/genetics , Genetic Variation , Haplotypes/genetics , Heterozygote , Homozygote , Immunity, Innate , Inbreeding , Molecular Sequence Annotation , Molecular Sequence Data , Plant Diseases/genetics , Ploidies , Solanum tuberosum/physiology
14.
Plant J ; 81(5): 810-21, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25603894

ABSTRACT

The family Euphorbiaceae includes some of the most efficient biomass accumulators. Whole genome sequencing and the development of genetic maps of these species are important components in molecular breeding and genetic improvement. Here we report the draft genome of physic nut (Jatropha curcas L.), a biodiesel plant. The assembled genome has a total length of 320.5 Mbp and contains 27,172 putative protein-coding genes. We established a linkage map containing 1208 markers and anchored the genome assembly (81.7%) to this map to produce 11 pseudochromosomes. After gene family clustering, 15,268 families were identified, of which 13,887 existed in the castor bean genome. Analysis of the genome highlighted specific expansion and contraction of a number of gene families during the evolution of this species, including the ribosome-inactivating proteins and oil biosynthesis pathway enzymes. The genomic sequence and linkage map provide a valuable resource not only for fundamental and applied research on physic nut but also for evolutionary and comparative genomics analysis, particularly in the Euphorbiaceae.


Subject(s)
Genome, Plant/genetics , Jatropha/genetics , Ricinus communis/genetics , Base Sequence , Biofuels , Chromosome Mapping , DNA, Complementary/chemistry , DNA, Complementary/genetics , DNA, Plant/chemistry , DNA, Plant/genetics , Evolution, Molecular , Genotype , Molecular Sequence Annotation , Molecular Sequence Data , Multigene Family , Sequence Analysis, DNA , Transcriptome
15.
BMC Plant Biol ; 16: 43, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26865323

ABSTRACT

BACKGROUND: Light plays an important role in plant growth and development. In this study, the impact of light on physiology of 20-d-old Arabidopsis leaves was examined through transcriptomic, proteomic and metabolomic analysis. Since the energy-generating electron transport chains in chloroplasts and mitochondria are encoded by both nuclear and organellar genomes, sequencing total RNA after removal of ribosomal RNAs provides essential information on transcription of organellar genomes. The changes in the levels of ADP, ATP, NADP(+), NADPH and 41 metabolites upon illumination were also quantified. RESULTS: Upon illumination, while the transcription of the genes encoded by the plastid genome did not change significantly, the transcription of nuclear genes encoding different functional complexes in the photosystem are differentially regulated whereas members of the same complex are co-regulated with each other. The abundance of mRNAs and proteins encoded by all three genomes are, however, not always positively correlated. One such example is the negative correlation between mRNA and protein abundances of the photosystem components, which reflects the importance of post-transcriptional regulation in plant physiology. CONCLUSION: This study provides systems-wide datasets which allow plant researchers to examine the changes in leaf transcriptomes, proteomes and key metabolites upon illumination and to determine whether there are any correlations between changes in transcript and protein abundances of a particular gene or pathway upon illumination. The integration of data of the organelles and the photosystems, Calvin-Benson cycle, carbohydrate metabolism, glycolysis, the tricarboxylic acid cycle and respiratory chain, thereby provides a more complete picture to the changes in plant physiology upon illumination than has been attained to date.


Subject(s)
Arabidopsis/radiation effects , Light , Plant Leaves/radiation effects , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/biosynthesis , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant
16.
Plant Physiol ; 169(2): 1344-55, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26304849

ABSTRACT

The nucleus-encoded mitochondria-targeted proteins, multiple organellar RNA editing factors (MORF3, MORF5, and MORF6), interact with Arabidopsis (Arabidopsis thaliana) PURPLE ACID PHOSPHATASE2 (AtPAP2) located on the chloroplast and mitochondrial outer membranes in a presequence-dependent manner. Phosphorylation of the presequence of the precursor MORF3 (pMORF3) by endogenous kinases in wheat germ translation lysate, leaf extracts, or STY kinases, but not in rabbit reticulocyte translation lysate, resulted in the inhibition of protein import into mitochondria. This inhibition of import could be overcome by altering threonine/serine residues to alanine on the presequence, thus preventing phosphorylation. Phosphorylated pMORF3, but not the phosphorylation-deficient pMORF3, can form a complex with 14-3-3 proteins and HEAT SHOCK PROTEIN70. The phosphorylation-deficient mutant of pMORF3 also displayed faster rates of import when translated in wheat germ lysates. Mitochondria isolated from plants with altered amounts of AtPAP2 displayed altered protein import kinetics. The import rate of pMORF3 synthesized in wheat germ translation lysate into pap2 mitochondria was slower than that into wild-type mitochondria, and this rate disparity was not seen for pMORF3 synthesized in rabbit reticulocyte translation lysate, the latter translation lysate largely deficient in kinase activity. Taken together, these results support a role for the phosphorylation and dephosphorylation of pMORF3 during the import into plant mitochondria. These results suggest that kinases, possibly STY kinases, and AtPAP2 are involved in the import of protein into both mitochondria and chloroplasts and provide a mechanism by which the import of proteins into both organelles may be coordinated.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , 14-3-3 Proteins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Mitochondrial Proteins/genetics , Mutation , Phosphorylation , Phylogeny , Plants, Genetically Modified , Protein Precursors/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Transport , Transcription Factors/metabolism
17.
Plant Cell ; 25(8): 2813-30, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23983221

ABSTRACT

The Brassicaceae, including Arabidopsis thaliana and Brassica crops, is unmatched among plants in its wealth of genomic and functional molecular data and has long served as a model for understanding gene, genome, and trait evolution. However, genome information from a phylogenetic outgroup that is essential for inferring directionality of evolutionary change has been lacking. We therefore sequenced the genome of the spider flower (Tarenaya hassleriana) from the Brassicaceae sister family, the Cleomaceae. By comparative analysis of the two lineages, we show that genome evolution following ancient polyploidy and gene duplication events affect reproductively important traits. We found an ancient genome triplication in Tarenaya (Th-α) that is independent of the Brassicaceae-specific duplication (At-α) and nested Brassica (Br-α) triplication. To showcase the potential of sister lineage genome analysis, we investigated the state of floral developmental genes and show Brassica retains twice as many floral MADS (for minichromosome maintenance1, AGAMOUS, DEFICIENS and serum response factor) genes as Tarenaya that likely contribute to morphological diversity in Brassica. We also performed synteny analysis of gene families that confer self-incompatibility in Brassicaceae and found that the critical serine receptor kinase receptor gene is derived from a lineage-specific tandem duplication. The T. hassleriana genome will facilitate future research toward elucidating the evolutionary history of Brassicaceae genomes.


Subject(s)
Brassicaceae/genetics , Evolution, Molecular , Genome, Plant/genetics , Quantitative Trait, Heritable , Flowers/genetics , Flowers/growth & development , Gene Expression Regulation, Plant , Genes, Plant/genetics , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Molecular Sequence Annotation , Phylogeny , Physical Chromosome Mapping , Polyploidy , Reproduction/genetics , Self-Incompatibility in Flowering Plants/genetics , Sequence Analysis, DNA , Synteny/genetics , Time Factors
18.
Nature ; 463(7279): 311-7, 2010 Jan 21.
Article in English | MEDLINE | ID: mdl-20010809

ABSTRACT

Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes.


Subject(s)
Genome/genetics , Genomics , Ursidae/genetics , Algorithms , Animals , China , Conserved Sequence/genetics , Contig Mapping , Diet/veterinary , Dogs , Evolution, Molecular , Female , Fertility/genetics , Fertility/physiology , Heterozygote , Humans , Multigene Family/genetics , Polymorphism, Single Nucleotide/genetics , Receptors, G-Protein-Coupled/genetics , Sequence Alignment , Sequence Analysis, DNA , Synteny/genetics , Ursidae/classification , Ursidae/physiology
19.
Plant J ; 76(4): 557-67, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23952714

ABSTRACT

Sacred lotus (Nelumbo nucifera) is an ornamental plant that is also used for food and medicine. This basal eudicot species is especially important from an evolutionary perspective, as it occupies a critical phylogenetic position in flowering plants. Here we report the draft genome of a wild strain of sacred lotus. The assembled genome is 792 Mb, which is approximately 85-90% of genome size estimates. We annotated 392 Mb of repeat sequences and 36,385 protein-coding genes within the genome. Using these sequence data, we constructed a phylogenetic tree and confirmed the basal location of sacred lotus within eudicots. Importantly, we found evidence for a relatively recent whole-genome duplication event; any indication of the ancient paleo-hexaploid event was, however, absent. Genomic analysis revealed evidence of positive selection within 28 embryo-defective genes and one annexin gene that may be related to the long-term viability of sacred lotus seed. We also identified a significant expansion of starch synthase genes, which probably elevated starch levels within the rhizome of sacred lotus. Sequencing this strain of sacred lotus thus provided important insights into the evolution of flowering plant and revealed genetic mechanisms that influence seed dormancy and starch synthesis.


Subject(s)
Biological Evolution , Genome, Plant , Nelumbo/genetics , Amino Acid Sequence , Molecular Sequence Data , Nelumbo/growth & development , Plant Dormancy/genetics , Seeds/growth & development , Selection, Genetic , Sequence Analysis, DNA , Starch/biosynthesis
20.
Plant Physiol Biochem ; 206: 108191, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38016367

ABSTRACT

Nitrate, the primary form of nitrogen absorbed by plants, supplies essential compounds for plant growth and development. Peas are frequently used as rotation crops to improve and stabilize soil fertility. However, the determinants of nitrate uptake and transport in peas remain largely unclear, primarily due to the pea genome's complexity and size. In this study, we utilized the complete genomic information of peas to identify three PsNRT2 family genes within the pea genome. We conducted a comprehensive examination of their protein conserved domains, physicochemical properties, gene structure, and phylogenetic evolution, revealing PsNRT2.3 as the potential key gene for high-affinity nitrate transport in peas. Subcellular localization studies indicated that PsNRT2.3 resides on the plasma membrane. Using hairy root transformation, we noted the predominant expression of PsNRT2.3 in the root stele, which is inducible by nitrate. Our experiments involving overexpression and silencing methods further confirmed that PsNRT2.3 plays a key role in enhancing nitrate uptake in peas. Additionally, our work showed that PsNAR could interact with PsNRT2.3, modulating pea nitrate uptake. After silencing PsNAR, even with the normal expression of PsNRT2.3, the ability of peas to absorb nitrate was significantly reduced. In conclusion, this study identifies the high-affinity nitrate transport gene PsNRT2.3 in peas and clarifies its critical role and regulatory network in nitrate transport, contributing to a new understanding of nitrate utilization in peas.


Subject(s)
Nitrates , Pisum sativum , Pisum sativum/genetics , Nitrates/metabolism , Phylogeny , Nitrogen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL