ABSTRACT
OBJECTIVES: This study aimed to evaluate the safety and applicability of treating chronic respiratory insufficiency with diaphragm pacing relative to mechanical ventilation. MATERIALS AND METHODS: A literature review and analysis were conducted using the safety, appropriateness, financial neutrality, and efficacy principles. RESULTS: Although mechanical ventilation is clearly indicated in acute respiratory failure, diaphragm pacing improves life expectancy, increases quality of life, and reduces complications in patients with chronic respiratory insufficiency. CONCLUSION: Diaphragm pacing should be given more consideration in appropriately selected patients with chronic respiratory insufficiency.
Subject(s)
Electric Stimulation Therapy , Respiratory Insufficiency , Humans , Diaphragm , Quality of Life , Respiratory Insufficiency/therapy , Respiratory Insufficiency/etiology , Respiration, Artificial/adverse effects , Electric Stimulation Therapy/adverse effectsABSTRACT
Background Radiogenomics of pediatric medulloblastoma (MB) offers an opportunity for MB risk stratification, which may aid therapeutic decision making, family counseling, and selection of patient groups suitable for targeted genetic analysis. Purpose To develop machine learning strategies that identify the four clinically significant MB molecular subgroups. Materials and Methods In this retrospective study, consecutive pediatric patients with newly diagnosed MB at MRI at 12 international pediatric sites between July 1997 and May 2020 were identified. There were 1800 features extracted from T2- and contrast-enhanced T1-weighted preoperative MRI scans. A two-stage sequential classifier was designed-one that first identifies non-wingless (WNT) and non-sonic hedgehog (SHH) MB and then differentiates therapeutically relevant WNT from SHH. Further, a classifier that distinguishes high-risk group 3 from group 4 MB was developed. An independent, binary subgroup analysis was conducted to uncover radiomics features unique to infantile versus childhood SHH subgroups. The best-performing models from six candidate classifiers were selected, and performance was measured on holdout test sets. CIs were obtained by bootstrapping the test sets for 2000 random samples. Model accuracy score was compared with the no-information rate using the Wald test. Results The study cohort comprised 263 patients (mean age ± SD at diagnosis, 87 months ± 60; 166 boys). A two-stage classifier outperformed a single-stage multiclass classifier. The combined, sequential classifier achieved a microaveraged F1 score of 88% and a binary F1 score of 95% specifically for WNT. A group 3 versus group 4 classifier achieved an area under the receiver operating characteristic curve of 98%. Of the Image Biomarker Standardization Initiative features, texture and first-order intensity features were most contributory across the molecular subgroups. Conclusion An MRI-based machine learning decision path allowed identification of the four clinically relevant molecular pediatric medulloblastoma subgroups. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Chaudhary and Bapuraj in this issue.
Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Adolescent , Cerebellar Neoplasms/diagnostic imaging , Cerebellar Neoplasms/genetics , Child , Child, Preschool , Female , Hedgehog Proteins/genetics , Humans , Magnetic Resonance Imaging/methods , Male , Medulloblastoma/diagnostic imaging , Medulloblastoma/genetics , Retrospective StudiesABSTRACT
Glioblastoma multiforme (GBM) is a highly aggressive malignant brain tumor with fatal outcome. Tumor-associated macrophages and microglia (TAMs) have been found to be major tumor-promoting immune cells in the tumor microenvironment. Hence, modulation and reeducation of tumor-associated macrophages and microglia in GBM is considered a promising antitumor strategy. Resident microglia and invading macrophages have been shown to have distinct origin and function. Whereas yolk sac-derived microglia reside in the brain, blood-derived monocytes invade the central nervous system only under pathological conditions like tumor formation. We recently showed that disruption of the SIRPα-CD47 signaling axis is efficacious against various brain tumors including GBM primarily by inducing tumor phagocytosis. However, most effects are attributed to macrophages recruited from the periphery but the role of the brain resident microglia is unknown. Here, we sought to utilize a model to distinguish resident microglia and peripheral macrophages within the GBM-TAM pool, using orthotopically xenografted, immunodeficient, and syngeneic mouse models with genetically color-coded macrophages (Ccr2RFP) and microglia (Cx3cr1GFP). We show that even in the absence of phagocytizing macrophages (Ccr2RFP/RFP), microglia are effector cells of tumor cell phagocytosis in response to anti-CD47 blockade. Additionally, macrophages and microglia show distinct morphological and transcriptional changes. Importantly, the transcriptional profile of microglia shows less of an inflammatory response which makes them a promising target for clinical applications.
Subject(s)
Brain Neoplasms/immunology , CD47 Antigen/immunology , Glioblastoma/immunology , Microglia/immunology , Neoplasm Proteins/immunology , Neoplasms, Experimental/immunology , Phagocytosis , Receptors, Immunologic/immunology , Signal Transduction/immunology , Animals , Brain Neoplasms/pathology , CD47 Antigen/genetics , Glioblastoma/genetics , Glioblastoma/pathology , Macrophages/immunology , Macrophages/pathology , Mice , Mice, Inbred NOD , Mice, Transgenic , Microglia/pathology , Monocytes/immunology , Monocytes/pathology , Neoplasm Proteins/genetics , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Receptors, Immunologic/genetics , Signal Transduction/geneticsABSTRACT
Lesions of the cerebellopontine angle (CPA) in young children are rare, with the most common being arachnoid cysts and epidermoid inclusion cysts. The authors report a case of an encephalocele containing heterotopic cerebellar tissue arising from the right middle cerebellar peduncle and filling the right internal acoustic canal in a 2-year-old female patient. Her initial presentation included a focal left 6th nerve palsy. Magnetic resonance imaging was suggestive of a high-grade tumor of the right CPA. The lesion was removed via a retrosigmoid approach, and histopathologic analysis revealed heterotopic atrophic cerebellar tissue. This report is the first description of a heterotopic cerebellar encephalocele within the CPA and temporal skull base of a pediatric patient.
Subject(s)
Arachnoid Cysts , Cerebellar Neoplasms , Cerebellopontine Angle/diagnostic imaging , Cerebellopontine Angle/surgery , Child , Child, Preschool , Encephalocele/diagnostic imaging , Encephalocele/surgery , Female , Humans , Magnetic Resonance Imaging , Skull BaseABSTRACT
The self-renewal versus differentiation choice of Drosophila and mammalian neural stem cells (NSCs) requires Notch (N) signaling. How N regulates NSC behavior is not well understood. Here we show that canonical N signaling cooperates with a noncanonical N signaling pathway to mediate N-directed NSC regulation. In the noncanonical pathway, N interacts with PTEN-induced kinase 1 (PINK1) to influence mitochondrial function, activating mechanistic target of rapamycin complex 2 (mTORC2)/AKT signaling. Importantly, attenuating noncanonical N signaling preferentially impaired the maintenance of Drosophila and human cancer stem cell-like tumor-forming cells. Our results emphasize the importance of mitochondria to N and NSC biology, with important implications for diseases associated with aberrant N signaling.
Subject(s)
Mitochondria/metabolism , Multiprotein Complexes/metabolism , Neoplastic Stem Cells/metabolism , Protein Kinases/metabolism , Receptors, Notch/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Animals , Brain Neoplasms/physiopathology , Cell Line, Tumor , Cell Proliferation , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gene Expression Regulation , Humans , Mechanistic Target of Rapamycin Complex 2 , Microscopy, Electron, Transmission , Mitochondria/enzymology , Mitochondria/ultrastructure , Multiprotein Complexes/genetics , Mutation , Protein Kinases/genetics , RNA Interference , TOR Serine-Threonine Kinases/geneticsABSTRACT
Background Iron oxide nanoparticles are an alternative contrast agent for MRI. Gadolinium deposition has raised safety concerns, but it is unknown whether ferumoxytol administration also deposits in the brain. Purpose To investigate whether there are signal intensity changes in the brain at multiecho gradient imaging following ferumoxytol exposure in children and young adults. Materials and Methods This retrospective case-control study included children and young adults, matched for age and sex, with brain arteriovenous malformations who received at least one dose of ferumoxytol from January 2014 to January 2018. In participants who underwent at least two brain MRI examinations (subgroup), the first and last available examinations were analyzed. Regions of interests were placed around deep gray structures on quantitative susceptibility mapping and R2* images. Mean susceptibility and R2* values of regions of interests were recorded. Measurements were assessed by linear regression analyses: a between-group comparison of ferumoxytol-exposed and unexposed participants and a within-group (subgroup) comparison before and after exposure. Results Seventeen participants (mean age ± standard deviation, 13 years ± 5; nine male) were in the ferumoxytol-exposed (case) group, 21 (mean age, 14 years ± 5; 11 male) were in the control group, and nine (mean age, 12 years ± 6; four male) were in the subgroup. The mean number of ferumoxytol administrations was 2 ± 1 (range, one to four). Mean susceptibility (in parts per million [ppm]) and R2* (in inverse seconds [sec-1]) values of the dentate (case participants: 0.06 ppm ± 0.04 and 23.87 sec-1 ± 4.13; control participants: 0.02 ppm ± 0.03 and 21.7 sec-1 ± 5.26), substantia nigrae (case participants: 0.08 ppm ± 0.06 and 27.46 sec-1 ± 5.58; control participants: 0.04 ppm ± 0.05 and 24.96 sec-1 ± 5.3), globus pallidi (case participants: 0.14 ppm ± 0.05 and 30.75 sec-1 ± 5.14; control participants: 0.08 ppm ± 0.07 and 28.82 sec-1 ± 6.62), putamina (case participants: 0.03 ppm ± 0.02 and 20.63 sec-1 ± 2.44; control participants: 0.02 ppm ± 0.02 and 19.65 sec-1 ± 3.6), caudate (case participants: -0.1 ppm ± 0.04 and 18.21 sec-1 ± 3.1; control participants: -0.06 ppm ± 0.05 and 18.83 sec-1 ± 3.32), and thalami (case participants: 0 ppm ± 0.03 and 16.49 sec-1 ± 3.6; control participants: 0.02 ppm ± 0.02 and 18.38 sec-1 ± 2.09) did not differ between groups (susceptibility, P = .21; R2*, P = .24). For the subgroup, the mean interval between the first and last ferumoxytol administration was 14 months ± 8 (range, 1-25 months). Mean susceptibility and R2* values of the dentate (first MRI: 0.06 ppm ± 0.05 and 25.78 sec-1 ± 5.9; last MRI: 0.06 ppm ± 0.02 and 25.55 sec-1 ± 4.71), substantia nigrae (first MRI: 0.06 ppm ± 0.06 and 28.26 sec-1 ± 9.56; last MRI: 0.07 ppm ± 0.06 and 25.65 sec-1 ± 6.37), globus pallidi (first MRI: 0.13 ppm ± 0.07 and 27.53 sec-1 ± 8.88; last MRI: 0.14 ppm ± 0.06 and 29.78 sec-1 ± 6.54), putamina (first MRI: 0.03 ppm ± 0.03 and 19.78 sec-1 ± 3.51; last MRI: 0.03 ppm ± 0.02 and 19.73 sec-1 ± 3.01), caudate (first MRI: -0.09 ppm ± 0.05 and 21.38 sec-1 ± 4.72; last MRI: -0.1 ppm ± 0.05 and 18.75 sec-1 ± 2.68), and thalami (first MRI: 0.01 ppm ± 0.02 and 17.65 sec-1 ± 5.16; last MRI: 0 ppm ± 0.02 and 15.32 sec-1 ± 2.49) did not differ between the first and last MRI examinations (susceptibility, P = .95; R2*, P = .54). Conclusion No overall significant differences were found in susceptibility and R2* values of deep gray structures to suggest retained iron in the brain between ferumoxytol-exposed and unexposed children and young adults with arteriovenous malformations and in those exposed to ferumoxytol over time. © RSNA, 2020.
Subject(s)
Arteriovenous Malformations/diagnostic imaging , Brain/metabolism , Contrast Media/administration & dosage , Ferrosoferric Oxide/administration & dosage , Iron/metabolism , Magnetic Resonance Imaging/methods , Adolescent , Case-Control Studies , Child , Child, Preschool , Female , Humans , Male , Retrospective Studies , Young AdultABSTRACT
BACKGROUND: Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults, with a median survival of approximately 15 months. Semaphorin 3A (Sema3A), known for its axon guidance and antiangiogenic properties, has been implicated in GBM growth. We hypothesized that Sema3A directly inhibits brain tumor stem cell (BTSC) proliferation and drives invasion via Neuropilin 1 (Nrp1) and Plexin A1 (PlxnA1) receptors. METHODS: GBM BTSC cell lines were assayed by immunostaining and PCR for levels of Semaphorin 3A (Sema3A) and its receptors Nrp1 and PlxnA1. Quantitative BrdU, cell cycle and propidium iodide labeling assays were performed following exogenous Sema3A treatment. Quantitative functional 2-D and 3-D invasion assays along with shRNA lentiviral knockdown of Nrp1 and PlxnA1 are also shown. In vivo flank studies comparing tumor growth of knockdown versus control BTSCs were performed. Statistics were performed using GraphPad Prism v7. RESULTS: Immunostaining and PCR analysis revealed that BTSCs highly express Sema3A and its receptors Nrp1 and PlxnA1, with expression of Nrp1 in the CD133 positive BTSCs, and absence in differentiated tumor cells. Treatment with exogenous Sema3A in quantitative BrdU, cell cycle, and propidium iodide labeling assays demonstrated that Sema3A significantly inhibited BTSC proliferation without inducing cell death. Quantitative functional 2-D and 3-D invasion assays showed that treatment with Sema3A resulted in increased invasion. Using shRNA lentiviruses, knockdown of either NRP1 or PlxnA1 receptors abrogated Sema3A antiproliferative and pro-invasive effects. Interestingly, loss of the receptors mimicked Sema3A effects, inhibiting BTSC proliferation and driving invasion. Furthermore, in vivo studies comparing tumor growth of knockdown and control infected BTSCs implanted into the flanks of nude mice confirmed the decrease in proliferation with receptor KD. CONCLUSIONS: These findings demonstrate the importance of Sema3A signaling in GBM BTSC proliferation and invasion, and its potential as a therapeutic target.
Subject(s)
Brain Neoplasms/pathology , ErbB Receptors/genetics , Genes, erbB-1 , Glioblastoma/pathology , Glioma/pathology , Neoplasm Proteins/physiology , Semaphorin-3A/physiology , Animals , Brain Neoplasms/metabolism , Cell Line, Tumor , Gene Knockdown Techniques , Genetic Vectors/genetics , Glioblastoma/genetics , Glioblastoma/metabolism , Glioma/genetics , Glioma/metabolism , Heterografts , Humans , Lentivirus/genetics , Mice , Mice, Nude , Neoplasm Invasiveness , Neoplasm Proteins/genetics , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , Neuropilin-1/biosynthesis , Neuropilin-1/genetics , Neuropilin-1/physiology , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Receptors, Cell Surface/biosynthesis , Receptors, Cell Surface/genetics , Receptors, Cell Surface/physiology , Specific Pathogen-Free OrganismsABSTRACT
STUDY DESIGN: Retrospective cohort study. OBJECTIVE: To determine if topical vancomycin irrigation reduces the incidence of post-operative surgical site infections following pediatric spinal procedures. Surgical site infections (SSIs) following spinal procedures performed in pediatric patients represent a serious complication. Prophylactic use of topical vancomycin prior to closure has been shown to be effective in reducing incidence of SSIs in adult spinal procedures. Non-instrumented cases make up the majority of spinal procedures in pediatric patients, and the efficacy of prophylactic topical vancomycin in these procedures has not previously been reported. METHODS: This retrospective study reviewed all non-instrumented spinal procedures performed over a period from 05/2014-12/2016 for topical vancomycin use, surgical site infections, and clinical variables associated with SSI. Topical vancomycin was utilized as infection prophylaxis, and applied as a liquid solution within the wound prior to closure. RESULTS: Ninety-five consecutive, non-instrumented, pediatric spinal surgeries were completed between 01/2015 and 12/2016, of which the last 68 utilized topical vancomycin. There was a 11.1% SSI rate in the non-topical vancomycin cohort versus 0% in the topical vancomycin cohort (P = 0.005). The number needed to treat was 9. There were no significant differences in risk factors for SSI between cohorts. There were no complications associated topical vancomycin use. CONCLUSIONS: Routine topical vancomycin administration during closure of non-instrumented spinal procedures can be a safe and effective tool for reducing SSIs in the pediatric neurosurgical population.
Subject(s)
Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Antibiotic Prophylaxis/methods , Neurosurgical Procedures/methods , Spine/surgery , Surgical Wound Infection/prevention & control , Vancomycin/administration & dosage , Vancomycin/therapeutic use , Administration, Topical , Adolescent , Anti-Bacterial Agents/adverse effects , Antibiotic Prophylaxis/economics , Child , Child, Preschool , Cohort Studies , Drug Costs , Female , Humans , Infant , Infant, Newborn , Male , Retrospective Studies , Spinal Fusion , Treatment Outcome , Vancomycin/adverse effectsABSTRACT
OBJECTIVE: While conventional imaging can readily identify ventricular enlargement in hydrocephalus, structural changes that underlie microscopic tissue injury might be more difficult to capture. MRI-based diffusion tensor imaging (DTI) uses properties of water motion to uncover changes in the tissue microenvironment. The authors hypothesized that DTI can identify alterations in optic nerve microstructure in children with hydrocephalus. METHODS: The authors retrospectively reviewed 21 children (< 18 years old) who underwent DTI before and after neurosurgical intervention for acute obstructive hydrocephalus from posterior fossa tumors. Their optic nerve quantitative DTI metrics of mean diffusivity (MD) and fractional anisotropy (FA) were compared to those of 21 age-matched healthy controls. RESULTS: Patients with hydrocephalus had increased MD and decreased FA in bilateral optic nerves, compared to controls (p < 0.001). Normalization of bilateral optic nerve MD and FA on short-term follow-up (median 1 day) after neurosurgical intervention was observed, as was near-complete recovery of MD on long-term follow-up (median 1.8 years). CONCLUSIONS: DTI was used to demonstrate reversible alterations of optic nerve microstructure in children presenting acutely with obstructive hydrocephalus. Alterations in optic nerve MD and FA returned to near-normal levels on short- and long-term follow-up, suggesting that surgical intervention can restore optic nerve tissue microstructure. This technique is a safe, noninvasive imaging tool that quantifies alterations of neural tissue, with a potential role for evaluation of pediatric hydrocephalus.
Subject(s)
Diffusion Tensor Imaging/methods , Hydrocephalus/diagnostic imaging , Neuroimaging/methods , Optic Nerve/diagnostic imaging , Acute Disease , Adolescent , Anisotropy , Case-Control Studies , Cerebrospinal Fluid Leak , Child , Child, Preschool , Female , Humans , Hydrocephalus/etiology , Hydrocephalus/surgery , Infant , Infratentorial Neoplasms/complications , Infratentorial Neoplasms/surgery , Male , Medulloblastoma/complications , Medulloblastoma/surgery , Optic Nerve/pathology , Retrospective Studies , Ventriculoperitoneal ShuntABSTRACT
Topical vancomycin has been demonstrated to be safe and effective for reducing surgical site infections (SSIs) following spine surgery in both adults and children, however, there are no studies of its efficacy in reducing SSIs in craniofacial surgery. The SSIs are one of the most common complications following craniofacial surgery. The complexity of craniofacial procedures, use of grafts and implants, long operative durations and larger surgical wounds all contribute to the heightened risk of SSIs in pediatric craniofacial cases. A retrospective review of all open and endoscopic pediatric craniofacial procedures performed between May 2014 and December 2017 at a single children's hospital was conducted to examine SSI rates between patients receiving topical vancomycin and a historical control group. The treatment group received topical vancomycin irrigation before wound closure. An ad-hoc cost analysis was performed to determine the cost-savings associated with topical vancomycin use. A total of 132 craniofacial procedures were performed during the study period, with 50 cases in the control group and 82 cases in the vancomycin group. Overall, SSI rate was 3.03%. Use of topical vancomycin irrigation led to a significant reduction in SSIs (4/50 SSI or 8.0% in control group vs 0/82 or 0% in vancomycin group, Pâ=â0.04). No adverse events were observed with topical vancomycin use. The potential cost-savings associated with the use of topical vancomycin as SSI prophylaxis in this study was $102,152. Addition of topical vancomycin irrigation as routine surgical infection prophylaxis can be an effective and low-cost method for reducing SSI in pediatric craniofacial surgery.
Subject(s)
Anti-Bacterial Agents/therapeutic use , Surgical Wound Infection/prevention & control , Vancomycin/therapeutic use , Administration, Topical , Antibiotic Prophylaxis/methods , Child, Preschool , Face/surgery , Female , Humans , Infant , Male , Retrospective StudiesABSTRACT
Glioblastoma is the most common malignant brain tumor. The heterogeneity at the cellular level, metabolic specificities and plasticity of the cancer cells are a challenge for glioblastoma treatment. Identification of cancer cells endowed with stem properties and able to propagate the tumor in animal xenografts has opened a new paradigm in cancer therapy. Thus, to increase efficacy and avoid tumor recurrence, therapies need to target not only the differentiated cells of the tumor mass, but also the cancer stem-like cells. These therapies need to be effective on cells present in the hypoxic, slightly acidic microenvironment found within tumors. Such a microenvironment is known to favor more aggressive undifferentiated phenotypes and a slow-growing "quiescent state" that preserves the cells from chemotherapeutic agents, which mostly target proliferating cells. Based on these considerations, we performed a differential screening of the Prestwick Chemical Library of approved drugs on both proliferating and quiescent glioblastoma stem-like cells and identified bisacodyl as a cytotoxic agent with selectivity for quiescent glioblastoma stem-like cells. In the present study we further characterize bisacodyl activity and show its efficacy in vitro on clonal macro-tumorospheres, as well as in vivo in glioblastoma mouse models. Our work further suggests that bisacodyl acts through inhibition of Ca2+ release from the InsP3 receptors.
Subject(s)
Bisacodyl/pharmacology , Brain Neoplasms/pathology , Calcium Signaling , Glioblastoma/pathology , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Neoplastic Stem Cells/pathology , Brain Neoplasms/metabolism , Cell Line, Tumor , Glioblastoma/metabolism , Humans , Neoplastic Stem Cells/metabolismABSTRACT
OBJECTIVE: To compare cerebral perfusion and diffusion in survivors of childhood posterior fossa brain tumor with neurologically normal controls and correlate differences with cognitive dysfunction. STUDY DESIGN: We analyzed retrospectively arterial spin-labeled cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) in 21 patients with medulloblastoma (MB), 18 patients with pilocytic astrocytoma (PA), and 64 neurologically normal children. We generated ANCOVA models to evaluate treatment effects on the cerebral cortex, thalamus, caudate, putamen, globus pallidus, hippocampus, amygdala, nucleus accumbens, and cerebral white matter at time points an average of 5.7 years after original diagnosis. A retrospective review of patient charts identified 12 patients with neurocognitive data and in whom the relationship between IQ and magnetic resonance imaging variables was assessed for each brain structure. RESULTS: Patients with MB (all treated with surgery, chemotherapy, and radiation) had significantly lower global CBF relative to controls (10%-23% lower, varying by anatomic region, all adjusted P?.05), whereas patients with PA (all treated with surgery alone) had normal CBF. ADC was decreased specifically in the hippocampus and amygdala of patients with MB and within the amygdala of patients with PA but otherwise remained normal after therapy. In the patients with tumor previously evaluated for IQ, regional ADC, but not CBF, correlated with IQ (R2?=?0.33-0.75). CONCLUSIONS: The treatment for MB, but not PA, was associated with globally reduced CBF. Treatment in both tumor types was associated with diffusion abnormalities of the mesial temporal lobe structures. Despite significant perfusion abnormalities in patients with MB, diffusion, but not perfusion, correlated with cognitive outcomes.
Subject(s)
Brain/pathology , Cerebrovascular Circulation/physiology , Infratentorial Neoplasms/physiopathology , Adolescent , Astrocytoma/physiopathology , Astrocytoma/therapy , Brain/diagnostic imaging , Case-Control Studies , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infratentorial Neoplasms/therapy , Magnetic Resonance Imaging , Male , Medulloblastoma/physiopathology , Medulloblastoma/therapy , Neuropsychological Tests , Regional Blood Flow/physiology , Retrospective Studies , Young AdultABSTRACT
Brain tumor-initiating cells (BTICs) are self-renewing multipotent cells critical for tumor maintenance and growth. Using single-cell microfluidic profiling, we identified multiple subpopulations of BTICs coexisting in human glioblastoma, characterized by distinct surface marker expression and single-cell molecular profiles relating to divergent bulk tissue molecular subtypes. These data suggest BTIC subpopulation heterogeneity as an underlying source of intra-tumoral bulk tissue molecular heterogeneity, and will support future studies into BTIC subpopulation-specific therapies. Stem Cells 2016;34:1702-1707.
Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Neoplastic Stem Cells/pathology , Biomarkers, Tumor/metabolism , Brain Neoplasms/genetics , Cell Line, Tumor , Glioblastoma/genetics , Humans , Phenotype , Single-Cell Analysis , Transcription, GeneticABSTRACT
Advancements in immunotherapeutics promise new possibilities for the creation of glioblastoma (GBM) treatment options. Ongoing work in cancer stem cell biology has progressively elucidated the role of this tumor sub-population in oncogenesis and has distinguished them as prime therapeutic targets. Current clinical trials take a multifaceted approach with the intention of harnessing the intrinsic cytotoxic capabilities of the immune system to directly target glioblastoma cancer stem cells (gCSC) or indirectly disrupt their stromal microenvironment. Monoclonal antibodies (mAbs), dendritic cell (DC) vaccines, and chimeric antigen receptor (CAR) T cell therapies have emerged as the most common approaches, with particular iterations incorporating cancer stem cell antigenic markers in their treatment designs. Ongoing work to determine the comprehensive antigenic profile of the gCSC in conjunction with efforts to counter the immunosuppressive tumor microenvironment holds much promise in future immunotherapeutic strategies against GBM. Given recent advancements in these fields, we believe there is tremendous potential to improve outcomes of GBM patients in the continuing evolution of immunotherapies targeted to cancer stem cell populations in GBM.
Subject(s)
Brain Neoplasms , Glioblastoma , Immunotherapy/methods , Neoplastic Stem Cells/physiology , Animals , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Glioblastoma/immunology , Glioblastoma/pathology , Glioblastoma/therapy , Humans , Immunosuppression TherapyABSTRACT
PURPOSE: To derive quantitative image features from magnetic resonance (MR) images that characterize the radiographic phenotype of glioblastoma multiforme (GBM) lesions and to create radiogenomic maps associating these features with various molecular data. MATERIALS AND METHODS: Clinical, molecular, and MR imaging data for GBMs in 55 patients were obtained from the Cancer Genome Atlas and the Cancer Imaging Archive after local ethics committee and institutional review board approval. Regions of interest (ROIs) corresponding to enhancing necrotic portions of tumor and peritumoral edema were drawn, and quantitative image features were derived from these ROIs. Robust quantitative image features were defined on the basis of an intraclass correlation coefficient of 0.6 for a digital algorithmic modification and a test-retest analysis. The robust features were visualized by using hierarchic clustering and were correlated with survival by using Cox proportional hazards modeling. Next, these robust image features were correlated with manual radiologist annotations from the Visually Accessible Rembrandt Images (VASARI) feature set and GBM molecular subgroups by using nonparametric statistical tests. A bioinformatic algorithm was used to create gene expression modules, defined as a set of coexpressed genes together with a multivariate model of cancer driver genes predictive of the module's expression pattern. Modules were correlated with robust image features by using the Spearman correlation test to create radiogenomic maps and to link robust image features with molecular pathways. RESULTS: Eighteen image features passed the robustness analysis and were further analyzed for the three types of ROIs, for a total of 54 image features. Three enhancement features were significantly correlated with survival, 77 significant correlations were found between robust quantitative features and the VASARI feature set, and seven image features were correlated with molecular subgroups (P < .05 for all). A radiogenomics map was created to link image features with gene expression modules and allowed linkage of 56% (30 of 54) of the image features with biologic processes. CONCLUSION: Radiogenomic approaches in GBM have the potential to predict clinical and molecular characteristics of tumors noninvasively. Online supplemental material is available for this article.
Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/pathology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Algorithms , Contrast Media , Female , Humans , Male , Necrosis , Phenotype , Survival RateABSTRACT
Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of hematological malignancies but has been clinically less effective in solid tumors. Engineering macrophages with CARs has emerged as a promising approach to overcome some of the challenges faced by CAR-T cells due to the macrophage's ability to easily infiltrate tumors, phagocytose their targets, and reprogram the immune response. We engineered CAR-macrophages (CAR-Ms) to target chondroitin sulfate proteoglycan 4 (CSPG4), an antigen expressed in melanoma, and several other solid tumors. CSPG4-targeting CAR-Ms exhibited specific phagocytosis of CSPG4-expressing melanoma cells. Combining CSPG4-targeting CAR-Ms with CD47 blocking antibodies synergistically enhanced CAR-M-mediated phagocytosis and effectively inhibited melanoma spheroid growth in 3D. Furthermore, CSPG4-targeting CAR-Ms inhibited melanoma tumor growth in mouse models. These results suggest that CSPG4-targeting CAR-M immunotherapy is a promising solid tumor immunotherapy approach for treating melanoma. STATEMENT OF SIGNIFICANCE: We engineered macrophages with CARs as an alternative approach for solid tumor treatment. CAR-macrophages (CAR-Ms) targeting CSPG4, an antigen expressed in melanoma and other solid tumors, phagocytosed melanoma cells and inhibited melanoma growth in vivo . Thus, CSPG4-targeting CAR-Ms may be a promising strategy to treat patients with CSPG4-expressing tumors.
ABSTRACT
INTRODUCTION: The fibrous posterior atlanto-occipital membrane (PAOM) at the craniocervical junction is typically removed during decompression surgery for Chiari malformation type I (CM-I); however, its importance and ultrastructural architecture have not been investigated in children. We hypothesized that there are structural differences in the PAOM of patients with CM-I and those without. METHODS: In this prospective study, blinded pathological analysis was performed on PAOM specimens from children who had surgery for CM-I and children who had surgery for posterior fossa tumors (controls). Clinical and radiographic data were collected. Statistical analysis included comparisons between the CM-I and control cohorts and correlations with imaging measures. RESULTS: A total of 35 children (mean age at surgery 10.7 years; 94.3% white) with viable specimens for evaluation were enrolled: 24 with CM-I and 11 controls. There were no statistical demographic differences between the two cohorts. Four children had a family history of CM-I and five had a syndromic condition. The cohorts had similar measurements of tonsillar descent, syringomyelia, basion to C2, and condylar-to-C2 vertical axis (all p>0.05). The clival-axial angle was lower in patients with CM-I (138.1 vs. 149.3 degrees, p = 0.016). Morphologically, the PAOM demonstrated statistically higher proportions of disorganized architecture in patients with CM-I (75.0% vs. 36.4%, p = 0.012). There were no differences in PAOM fat, elastin, or collagen percentages overall and no differences in imaging or ultrastructural findings between male and female patients. Posterior fossa volume was lower in children with CM-I (163,234 mm3 vs. 218,305 mm3, p<0.001), a difference that persisted after normalizing for patient height (129.9 vs. 160.9, p = 0.028). CONCLUSIONS: In patients with CM-I, the PAOM demonstrates disorganized architecture compared with that of control patients. This likely represents an anatomic adaptation in the presence of CM-I rather than a pathologic contribution.
Subject(s)
Arnold-Chiari Malformation , Syringomyelia , Child , Humans , Male , Female , Arnold-Chiari Malformation/diagnostic imaging , Prospective Studies , Syringomyelia/diagnostic imaging , Magnetic Resonance Imaging , Cranial Fossa, Posterior/pathology , Decompression, Surgical/methodsABSTRACT
While multiple factors impact disease, artificial intelligence (AI) studies in medicine often use small, non-diverse patient cohorts due to data sharing and privacy issues. Federated learning (FL) has emerged as a solution, enabling training across hospitals without direct data sharing. Here, we present FL-PedBrain, an FL platform for pediatric posterior fossa brain tumors, and evaluate its performance on a diverse, realistic, multi-center cohort. Pediatric brain tumors were targeted due to the scarcity of such datasets, even in tertiary care hospitals. Our platform orchestrates federated training for joint tumor classification and segmentation across 19 international sites. FL-PedBrain exhibits less than a 1.5% decrease in classification and a 3% reduction in segmentation performance compared to centralized data training. FL boosts segmentation performance by 20 to 30% on three external, out-of-network sites. Finally, we explore the sources of data heterogeneity and examine FL robustness in real-world scenarios with data imbalances.
Subject(s)
Artificial Intelligence , Brain Neoplasms , Humans , Child , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Adolescent , Female , Male , Child, Preschool , Information Dissemination/methodsABSTRACT
OBJECTIVE: Inherited variants predisposing patients to type 1 or 1.5 Chiari malformation (CM) have been hypothesized but have proven difficult to confirm. The authors used a unique high-risk pedigree population resource and approach to identify rare candidate variants that likely predispose individuals to CM and protein structure prediction tools to identify pathogenicity mechanisms. METHODS: By using the Utah Population Database, the authors identified pedigrees with significantly increased numbers of members with CM diagnosis. From a separate DNA biorepository of 451 samples from CM patients and families, 32 CM patients belonging to 1 or more of 24 high-risk Chiari pedigrees were identified. Two high-risk pedigrees had 3 CM-affected relatives, and 22 pedigrees had 2 CM-affected relatives. To identify rare candidate predisposition gene variants, whole-exome sequence data from these 32 CM patients belonging to 24 CM-affected related pairs from high-risk pedigrees were analyzed. The I-TASSER package for protein structure prediction was used to predict the structures of both the wild-type and mutant proteins found here. RESULTS: Sequence analysis of the 24 affected relative pairs identified 38 rare candidate Chiari predisposition gene variants that were shared by at least 1 CM-affected pair from a high-risk pedigree. The authors found a candidate variant in HOXC4 that was shared by 2 CM-affected patients in 2 independent pedigrees. All 4 of these CM cases, 2 in each pedigree, exhibited a specific craniocervical bony phenotype defined by a clivoaxial angle less than 125°. The protein structure prediction results suggested that the mutation considered here may reduce the binding affinity of HOXC4 to DNA. CONCLUSIONS: Analysis of unique and powerful Utah genetic resources allowed identification of 38 strong candidate CM predisposition gene variants. These variants should be pursued in independent populations. One of the candidates, a rare HOXC4 variant, was identified in 2 high-risk CM pedigrees, with this variant possibly predisposing patients to a Chiari phenotype with craniocervical kyphosis.