Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Clin Sci (Lond) ; 137(3): 239-250, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36648486

ABSTRACT

Increasing evidence suggests excess skin Na+ accumulation in hypertension; however, the role of skin-specific mechanisms of local Na+/water regulation remains unclear. We investigated the association between measures of sweat and trans-epidermal water loss (TEWL) with Na+ content in the skin ([Na+]skin) and clinical characteristics in consecutive hypertensive patients. We obtained an iontophoretic pilocarpine-induced sweat sample, a skin punch biopsy for chemical analysis, and measures of TEWL from the upper limbs. Serum vascular endothelial growth factor-c (VEGF-c) and a reflectance measure of haemoglobin skin content served as surrogates of skin microvasculature. In our cohort (n = 90; age 21-86 years; females = 49%), sweat composition was independent of sex and BMI. Sweat Na+ concentration ([Na+]sweat) inversely correlated with [K+]sweat and was higher in patients on ACEIs/ARBs (P < 0.05). A positive association was found between [Na+]sweat and [Na+]skin, independent of sex, BMI, estimated Na+ intake and use of ACEi/ARBs (Padjusted = 0.025); both closely correlated with age (P < 0.01). Office DBP, but not SBP, inversely correlated with [Na+]sweat independent of other confounders (Padjusted = 0.03). Total sweat volume and Na+ loss were lower in patients with uncontrolled office BP (Padjusted < 0.005 for both); sweat volume also positively correlated with serum VEGF-c and TEWL. Lower TEWL was paralleled by lower skin haemoglobin content, which increased less after vasodilatory pilocarpine stimulation when BMI was higher (P = 0.010). In conclusion, measures of Na+ and water handling/regulation in the skin were associated with relevant clinical characteristics, systemic Na+ status and blood pressure values, suggesting a potential role of the skin in body-fluid homeostasis and therapeutic targeting of hypertension.


Subject(s)
Body Fluids , Hypertension , Female , Humans , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Vascular Endothelial Growth Factor C , Angiotensin Receptor Antagonists , Pilocarpine , Angiotensin-Converting Enzyme Inhibitors , Sodium , Body Fluids/chemistry , Water
2.
Nat Commun ; 11(1): 4222, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32839436

ABSTRACT

Our understanding of Na+ homeostasis has recently been reshaped by the notion of skin as a depot for Na+ accumulation in multiple cardiovascular diseases and risk factors. The proposed water-independent nature of tissue Na+ could induce local pathogenic changes, but lacks firm demonstration. Here, we show that tissue Na+ excess upon high Na+ intake is a systemic, rather than skin-specific, phenomenon reflecting architectural changes, i.e. a shift in the extracellular-to-intracellular compartments, due to a reduction of the intracellular or accumulation of water-paralleled Na+ in the extracellular space. We also demonstrate that this accumulation is unlikely to justify the observed development of experimental hypertension if it were water-independent. Finally, we show that this isotonic skin Na+ excess, reflecting subclinical oedema, occurs in hypertensive patients and in association with aging. The implications of our findings, questioning previous assumptions but also reinforcing the importance of tissue Na+ excess, are both mechanistic and clinical.


Subject(s)
Edema/metabolism , Homeostasis/physiology , Sodium/metabolism , Water-Electrolyte Balance/physiology , Aging/metabolism , Animals , Edema/diagnosis , Female , Humans , Hypertension/diagnosis , Hypertension/metabolism , Hypertension/physiopathology , Liver/metabolism , Lung/metabolism , Male , Myocardium/metabolism , Organ Specificity , Osmolar Concentration , Potassium/metabolism , Rats, Inbred WKY , Skin/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL