Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell Commun Signal ; 22(1): 277, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755629

ABSTRACT

INTRODUCTION: Bcl-2 and Bcl-xL are the most studied anti-apoptotic members of Bcl-2 family proteins. We previously characterized both of them, not only for their role in regulating apoptosis and resistance to therapy in cancer cells, but also for their non-canonical functions, mainly including promotion of cancer progression, metastatization, angiogenesis, and involvement in the crosstalk among cancer cells and components of the tumor microenvironment. Our goal was to identify transcriptional signature and novel cellular pathways specifically modulated by Bcl-2. METHODS: We performed RNAseq analysis of siRNA-mediated transient knockdown of Bcl-2 or Bcl-xL in human melanoma cells and gene ontology analysis to identify a specific Bcl-2 transcriptional signature. Expression of genes modulated by Bcl-2 and associated to Hippo pathway were validated in human melanoma, breast adenocarcinoma and non-small cell lung cancer cell lines by qRT-PCR. Western blotting analysis were performed to analyse protein expression of upstream regulators of YAP and in relation to different level of Bcl-2 protein. The effects of YAP silencing in Bcl-2 overexpressing cancer cells were evaluated in migration and cell viability assays in relation to different stiffness conditions. In vitro wound healing assays and co-cultures were used to evaluate cancer-specific Bcl-2 ability to activate fibroblasts. RESULTS: We demonstrated the Bcl-2-dependent modulation of Hippo Pathway in cancer cell lines from different tumor types by acting on upstream YAP regulators. YAP inhibition abolished the ability of Bcl-2 to increase tumor cell migration and proliferation on high stiffness condition of culture, to stimulate in vitro fibroblasts migration and to induce fibroblasts activation. CONCLUSIONS: We discovered that Bcl-2 regulates the Hippo pathway in different tumor types, promoting cell migration, adaptation to higher stiffness culture condition and fibroblast activation. Our data indicate that Bcl-2 inhibitors should be further investigated to counteract cancer-promoting mechanisms.


Subject(s)
Cell Movement , Hippo Signaling Pathway , Proto-Oncogene Proteins c-bcl-2 , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , bcl-X Protein/metabolism , bcl-X Protein/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Fibroblasts/metabolism , Gene Expression Regulation, Neoplastic , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Signal Transduction , Transcription Factors/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL