Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
PLoS Comput Biol ; 19(12): e1011700, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38127800

ABSTRACT

Fuzzy logic is useful tool to describe and represent biological or medical scenarios, where often states and outcomes are not only completely true or completely false, but rather partially true or partially false. Despite its usefulness and spread, fuzzy logic modeling might easily be done in the wrong way, especially by beginners and unexperienced researchers, who might overlook some important aspects or might make common mistakes. Malpractices and pitfalls, in turn, can lead to wrong or overoptimistic, inflated results, with negative consequences to the biomedical research community trying to comprehend a particular phenomenon, or even to patients suffering from the investigated disease. To avoid common mistakes, we present here a list of quick tips for fuzzy logic modeling any biomedical scenario: some guidelines which should be taken into account by any fuzzy logic practitioner, including experts. We believe our best practices can have a strong impact in the scientific community, allowing researchers who follow them to obtain better, more reliable results and outcomes in biomedical contexts.


Subject(s)
Fuzzy Logic , Medicine , Humans
2.
PeerJ Comput Sci ; 10: e1896, 2024.
Article in English | MEDLINE | ID: mdl-38435625

ABSTRACT

Diabetes is a metabolic disorder that affects more than 420 million of people worldwide, and it is caused by the presence of a high level of sugar in blood for a long period. Diabetes can have serious long-term health consequences, such as cardiovascular diseases, strokes, chronic kidney diseases, foot ulcers, retinopathy, and others. Even if common, this disease is uneasy to spot, because it often comes with no symptoms. Especially for diabetes type 2, that happens mainly in the adults, knowing how long the diabetes has been present for a patient can have a strong impact on the treatment they can receive. This information, although pivotal, might be absent: for some patients, in fact, the year when they received the diabetes diagnosis might be well-known, but the year of the disease unset might be unknown. In this context, machine learning applied to electronic health records can be an effective tool to predict the past duration of diabetes for a patient. In this study, we applied a regression analysis based on several computational intelligence methods to a dataset of electronic health records of 73 patients with diabetes type 1 with 20 variables and another dataset of records of 400 patients of diabetes type 2 with 49 variables. Among the algorithms applied, Random Forests was able to outperform the other ones and to efficiently predict diabetes duration for both the cohorts, with the regression performances measured through the coefficient of determination R2. Afterwards, we applied the same method for feature ranking, and we detected the most relevant factors of the clinical records correlated with past diabetes duration: age, insulin intake, and body-mass index. Our study discoveries can have profound impact on clinical practice: when the information about the duration of diabetes of patient is missing, medical doctors can use our tool and focus on age, insulin intake, and body-mass index to infer this important aspect. Regarding limitations, unfortunately we were unable to find additional dataset of EHRs of patients with diabetes having the same variables of the two analyzed here, so we could not verify our findings on a validation cohort.

3.
J Healthc Inform Res ; 8(1): 1-18, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38273986

ABSTRACT

Glioblastoma multiforme (GM) is a malignant tumor of the central nervous system considered to be highly aggressive and often carrying a terrible survival prognosis. An accurate prognosis is therefore pivotal for deciding a good treatment plan for patients. In this context, computational intelligence applied to data of electronic health records (EHRs) of patients diagnosed with this disease can be useful to predict the patients' survival time. In this study, we evaluated different machine learning models to predict survival time in patients suffering from glioblastoma and further investigated which features were the most predictive for survival time. We applied our computational methods to three different independent open datasets of EHRs of patients with glioblastoma: the Shieh dataset of 84 patients, the Berendsen dataset of 647 patients, and the Lammer dataset of 60 patients. Our survival time prediction techniques obtained concordance index (C-index) = 0.583 in the Shieh dataset, C-index = 0.776 in the Berendsen dataset, and C-index = 0.64 in the Lammer dataset, as best results in each dataset. Since the original studies regarding the three datasets analyzed here did not provide insights about the most predictive clinical features for survival time, we investigated the feature importance among these datasets. To this end, we then utilized Random Survival Forests, which is a decision tree-based algorithm able to model non-linear interaction between different features and might be able to better capture the highly complex clinical and genetic status of these patients. Our discoveries can impact clinical practice, aiding clinicians and patients alike to decide which therapy plan is best suited for their unique clinical status.

4.
PLOS Digit Health ; 3(3): e0000459, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38489347

ABSTRACT

BACKGROUND: Systemic inflammatory response syndrome (SIRS) and sepsis are the most common causes of in-hospital death. However, the characteristics associated with the improvement in the patient conditions during the ICU stay were not fully elucidated for each population as well as the possible differences between the two. GOAL: The aim of this study is to highlight the differences between the prognostic clinical features for the survival of patients diagnosed with SIRS and those of patients diagnosed with sepsis by using a multi-variable predictive modeling approach with a reduced set of easily available measurements collected at the admission to the intensive care unit (ICU). METHODS: Data were collected from 1,257 patients (816 non-sepsis SIRS and 441 sepsis) admitted to the ICU. We compared the performance of five machine learning models in predicting patient survival. Matthews correlation coefficient (MCC) was used to evaluate model performances and feature importance, and by applying Monte Carlo stratified Cross-Validation. RESULTS: Extreme Gradient Boosting (MCC = 0.489) and Logistic Regression (MCC = 0.533) achieved the highest results for SIRS and sepsis cohorts, respectively. In order of importance, APACHE II, mean platelet volume (MPV), eosinophil counts (EoC), and C-reactive protein (CRP) showed higher importance for predicting sepsis patient survival, whereas, SOFA, APACHE II, platelet counts (PLTC), and CRP obtained higher importance in the SIRS cohort. CONCLUSION: By using complete blood count parameters as predictors of ICU patient survival, machine learning models can accurately predict the survival of SIRS and sepsis ICU patients. Interestingly, feature importance highlights the role of CRP and APACHE II in both SIRS and sepsis populations. In addition, MPV and EoC are shown to be important features for the sepsis population only, whereas SOFA and PLTC have higher importance for SIRS patients.

SELECTION OF CITATIONS
SEARCH DETAIL