ABSTRACT
AIMS: Aveir VR performance and predictors for its pacing threshold (PCT) in a real-world cohort were investigated. METHODS: Electrical measurements at various stages of an Aveir VR implant were prospectively collected. Predictors for 3-month PCT were studied. A retrospective cohort of consecutive 139 Micra implants was used to compare the PCT evolution. High PCT was defined as ≥1.5â V, using a pulse width of 0.4â ms for Aveir and 0.24â ms for Micra. Excellent PCT was defined as ≤0.5â V at the respective pulse width. RESULTS: Among the 123 consecutive Aveir VR implant attempts, 122 (99.2%) were successful. The majority were of advanced age (mean 79.7) and small body size (mean BSA 1.60). Two patients (1.6%) experienced complications, including one pericardial effusion after device reposition and one intraoperative device dislodgement. Eighty-eight patients reached a 3-month follow-up. Aveir 3-month PCT was correlated with impedance at mapping (P = 0.015), tether mode (P < 0.001), end-of-procedure (P < 0.001), and mapping PCT (P = 0.035), but not with PCTs after fixation (P > 0.05). Tether mode impedance >470â ohms had 88% sensitivity and 71% specificity in predicting excellent 3-month PCT. Although it is more common for Aveir to have high PCT at end of procedure (11.5% for Aveir and 2.2% for Micra, P = 0.004), the rate at 3â months was similar (2.3% for Aveir and 3.1% for Micra, P = 1.000). CONCLUSION: Aveir VR demonstrated satisfactory performance in this high-risk cohort. Pacing thresholds tend to improve to a greater extent than Micra after implantation. The PCT after fixation, even after a waiting period, has limited predictive value for the chronic threshold. Low-mapping PCT and high intraoperative impedance predict chronic low PCT.
Subject(s)
Pacemaker, Artificial , Virtual Reality , Humans , Treatment Outcome , Retrospective Studies , Equipment Design , Cardiac Pacing, Artificial/adverse effects , Cardiac Pacing, Artificial/methodsABSTRACT
OBJECTIVES: To review the outcome following simultaneous pancreas and kidney transplantation in patients with type 1 diabetes mellitus and end-stage renal disease, as well as those with type 2 diabetes mellitus, and to discuss the applicability of this treatment in this locality. METHODS: A systematic literature review was performed by searching the PubMed and Elsevier databases. The search terms used were "simultaneous pancreas and kidney transplantation", "diabetes", "pancreas transplant" and "SPK". Original and major review articles related to simultaneous pancreas and kidney transplantation were reviewed. Papers published in English after 1985 were included. Clinical outcomes following transplantation were extracted for comparison between different treatment methods. Outcomes of simultaneous pancreas and kidney transplant and other transplantation methods were identified and categorised into patient survival, graft survival, diabetic complications, and quality of life. Patient survivals and graft survivals were also compared. RESULTS: Currently available clinical evidence shows good outcomes for type 1 diabetes mellitus in terms of patient survival, graft survival, diabetic complications, and quality of life. For type 2 diabetes mellitus, the efficacy and application of the procedure remain controversial but the outcomes are possibly comparable with those in type 1 diabetes mellitus. CONCLUSIONS: Simultaneous pancreas and kidney transplantation is a technically demanding procedure that is associated with significant complications, and it should be regarded as a 'last resort' treatment in patients whose diabetic complications have become life-threatening or severely burdensome despite best efforts in maintaining good diabetic control through lifestyle modifications and medications.