Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Environ Pollut ; 348: 123781, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38492752

ABSTRACT

Epidemiological studies showed a positive association between exposure to PM2.5 and the severity of influenza virus infection. However, the mechanisms by which PM2.5 can disrupt antiviral defence are still unclear. From this perspective, the objective of this study was to evaluate the effects of PM2.5 on antiviral signalling in the respiratory epithelium using the bronchial Calu-3 cell line grown at the air-liquid interface. Pre-exposure to PM2.5 before infection with the influenza virus was investigated, as well as a co-exposure. Although a physical interaction between the virus and the particles seems possible, no effect of PM2.5 on viral replication was observed during co-exposure, although a downregulation of IFN-ß release was associated to PM2.5 exposure. However, pre-exposure slightly increased the viral nucleoprotein production and the pro-inflammatory response. Conversely, the level of the myxovirus resistance protein A (MxA), an interferon-stimulated gene (ISG) induced by IFN-ß, was reduced. Therefore, these results suggest that pre-exposure to PM2.5 could alter the antiviral response of bronchial epithelial cells, increasing their susceptibility to viral infection.


Subject(s)
Influenza, Human , Orthomyxoviridae , Virus Diseases , Humans , Interferons , Influenza, Human/genetics , Influenza, Human/metabolism , Respiratory Mucosa , Antiviral Agents , Epithelium/metabolism , Particulate Matter/toxicity
2.
Environ Toxicol Pharmacol ; 103: 104281, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37742817

ABSTRACT

There is still a lack of in vitro human models to evaluate the chronic toxicity of drugs and environmental pollutants. Here, we used a 3D model of the human bronchial epithelium to assess repeated exposures to xenobiotics. The Calu-3 human bronchial cell line was exposed to silver nanoparticles (AgNP) 5 times during 12 days, at the air-liquid interface, to mimic single and repeated exposure to inhaled particles. Repeated exposures induced a stronger induction of the metal stress response and a steady oxidative stress over time. A sustained translocation of silver was observed after each exposure without any loss of the epithelial barrier integrity. The proteomic analysis of the mucus revealed changes in the secreted protein profiles associated with the epithelial immune response after repeated exposures only. These results demonstrate that advanced in vitro models are efficient to investigate the adaptive response of human cells submitted to repeated xenobiotic exposures.


Subject(s)
Metal Nanoparticles , Silver , Humans , Silver/toxicity , Metal Nanoparticles/toxicity , Proteomics , Xenobiotics/toxicity , Cell Line , Epithelial Cells
SELECTION OF CITATIONS
SEARCH DETAIL